[go: up one dir, main page]

login
A128387
Expansion of c(5x^2)/(1-x*c(5x^2)), where c(x) is the g.f. of A000108.
6
1, 1, 6, 11, 66, 146, 876, 2131, 12786, 32966, 197796, 530526, 3183156, 8786436, 52718616, 148733571, 892401426, 2561439806, 15368638836, 44731364266, 268388185596, 790211926076, 4741271556456, 14095578557486
OFFSET
0,3
COMMENTS
Hankel transform is 5^C(n+1,2).
Reversion of x*(1+x)/(1+2*x+6*x^2).
LINKS
FORMULA
G.f.: (sqrt(1-20*x^2) + 2*x - 1)/(2*x*(1-6*x)).
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^j*6^(k-j).
a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*5^k/(n-k+1).
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*5^k.
a(n) = Sum_{k=0..n} 5^k*A120730(n,n-k). - Philippe Deléham, Mar 03 2007
(n+1)*a(n) = 6*(n+1)*a(n-1) + 20*(n-2)*a(n-2) - 120*(n-2)*a(n-3). - R. J. Mathar, Nov 14 2011
MATHEMATICA
A120730[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
A126387[n_]:= Sum[5^k*A120730[n, n-k], {k, 0, n}];
Table[A126387[n], {n, 0, 50}] (* G. C. Greubel, Nov 07 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( (Sqrt(1-20*x^2)+2*x-1)/(2*x*(1-6*x)) )); // G. C. Greubel, Nov 07 2022
(SageMath)
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A126387(n): return sum(5^k*A120730(n, n-k) for k in range(n+1))
[A126387(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 28 2007
STATUS
approved