[go: up one dir, main page]

login
Search: a055652 -id:a055652
     Sort: relevance | references | number | modified | created      Format: long | short | data
Table T(m,k)=m^k-k^m (with 0^0 taken to be 1) as square array read by antidiagonals.
+10
7
0, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 2, 0, -2, -1, 1, 3, 1, -1, -3, -1, 1, 4, 0, 0, 0, -4, -1, 1, 5, -7, -17, 17, 7, -5, -1, 1, 6, -28, -118, 0, 118, 28, -6, -1, 1, 7, -79, -513, -399, 399, 513, 79, -7, -1, 1, 8, -192, -1844, -2800, 0, 2800, 1844, 192, -8, -1, 1, 9, -431
OFFSET
0,12
CROSSREFS
Rows A000012 (offset), A023443, A024012, A024026, A024040 and diagonals A000004, A007925, A046065, A055652.
KEYWORD
easy,sign,tabl
AUTHOR
Henry Bottomley, Jun 07 2000
EXTENSIONS
Title corrected by Sean A. Irvine, Mar 30 2022
STATUS
approved
Array A(n, k) = n^k * k^n, n, k >= 0, read by antidiagonals.
+10
4
1, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 16, 3, 0, 0, 4, 72, 72, 4, 0, 0, 5, 256, 729, 256, 5, 0, 0, 6, 800, 5184, 5184, 800, 6, 0, 0, 7, 2304, 30375, 65536, 30375, 2304, 7, 0, 0, 8, 6272, 157464, 640000, 640000, 157464, 6272, 8, 0, 0, 9, 16384, 750141, 5308416, 9765625
OFFSET
0,8
COMMENTS
Here 0^0 is defined to be 1. - Wolfdieter Lang, May 27 2018
FORMULA
From Wolfdieter Lang, May 22 2018: (Start)
As a sequence: a(n) = A003992(n)*A004248(n).
As a triangle: T(n, k) = (n-k)^k * k^(n-k), for n >= 1 and k = 1..n. (End)
EXAMPLE
A(3, 2) = 3^2 * 2^3 = 9*8 = 72.
The array A(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1 0 0 0 0 0 0 0 0 0 0 ...
1: 0 1 2 3 4 5 6 7 8 9 10 ...
2: 0 2 16 72 256 800 2304 6272 16384 41472 102400 ...
3: 0 3 72 729 5184 30375 157464 750141 3359232 14348907 59049000 ...
...
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 0 0
2: 0 1 0
3: 0 2 2 0
4: 0 3 16 3 0
5: 0 4 72 72 4 0
6: 0 5 256 729 256 5 0
7: 0 6 800 5184 5184 800 6 0
8: 0 7 2304 30375 65536 30375 2304 7 0
9: 0 8 6272 157464 640000 640000 157464 6272 8 0
... - Wolfdieter Lang, May 22 2018
MATHEMATICA
{{1}}~Join~Table[(#^k k^#) &[n - k], {n, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, May 24 2018 *)
PROG
(PARI) t1(n)=n-binomial(round(sqrt(2+2*n)), 2)
t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
a(n)=t1(n)^t2(n)*t2(n)^t1(n) \\ Eric Chen, Jun 09 2018
CROSSREFS
Columns and rows of A, or columns and diagonals of T, include A000007, A001477, A007758, A062074, A062075 etc. Diagonals of A include A062206, A051443, A051490. Sum of rows of T are A062817(n), for n >= 1
KEYWORD
nonn,tabl,easy
AUTHOR
Henry Bottomley, Jul 02 2001
STATUS
approved
Triangle read by rows: T(n,r) = n^r + r^n (1 <= r <= n).
+10
2
2, 3, 8, 4, 17, 54, 5, 32, 145, 512, 6, 57, 368, 1649, 6250, 7, 100, 945, 5392, 23401, 93312, 8, 177, 2530, 18785, 94932, 397585, 1647086, 9, 320, 7073, 69632, 423393, 1941760, 7861953, 33554432, 10, 593, 20412, 268705, 2012174, 10609137, 45136576
OFFSET
1,1
EXAMPLE
2,
3, 8,
4, 17, 54,
5, 32, 145, 512,
6, 57, 368, 1649, 6250,
7, 100, 945, 5392, 23401, 93312,
MAPLE
T:=(n, r)->n^r+r^n: for n from 1 to 10 do seq(T(n, r), r=1..n) od; # yields sequence in triangular form # Emeric Deutsch, Feb 04 2006
MATHEMATICA
Flatten[Table[n^r+r^n, {n, 10}, {r, n}]] (* Harvey P. Dale, Jun 19 2011 *)
CROSSREFS
Same information as A055652. - Franklin T. Adams-Watters, Oct 26 2009
KEYWORD
nonn,tabl
AUTHOR
Amarnath Murthy, Apr 23 2004
EXTENSIONS
More terms from Emeric Deutsch, Feb 04 2006
STATUS
approved
Concatenate n and the sum of primes dividing n (counting multiplicity).
+10
2
10, 22, 33, 44, 55, 65, 77, 86, 96, 107, 1111, 127, 1313, 149, 158, 168, 1717, 188, 1919, 209, 2110, 2213, 2323, 249, 2510, 2615, 279, 2811, 2929, 3010, 3131, 3210, 3314, 3419, 3512, 3610, 3737, 3821, 3916, 4011, 4141, 4212, 4343, 4415, 4511, 4625, 4747
OFFSET
1,1
LINKS
FORMULA
a(n) = 10^(A055652(A001414(n)))*n+A001414(n). - Robert Israel, Jun 26 2018
MAPLE
f:= proc(n) local q;
q:= add(t[1]*t[2], t=ifactors(n)[2]);
10^(1+ilog10(q))*n+q
end proc:
f(1):= 10:
map(f, [$1..100]); # Robert Israel, Jun 26 2018
MATHEMATICA
pr[{a_, b_}]:=a*b; Join[{10}, Table[FromDigits[Flatten[IntegerDigits[Join[{n}, {Total[pr/@FactorInteger[n]]}]]]], {n, 2, 47}]] (* James C. McMahon, Apr 02 2024 *)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Jason Earls, Jul 06 2005
STATUS
approved
Triangle T(n, k) = k^(n-k) + (n-k)^k with T(0, 0) = 1, read by rows.
+10
2
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 32, 54, 32, 6, 1, 1, 7, 57, 145, 145, 57, 7, 1, 1, 8, 100, 368, 512, 368, 100, 8, 1, 1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1, 1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1, 1, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 1
OFFSET
0,5
COMMENTS
This sequence is an approximation of Pascal's triangle with interior Kurtosis.
Essentially the same as A055652. - R. J. Mathar, Feb 19 2009
FORMULA
T(n, k) = k^(n-k) + (n-k)^k with T(0, 0) = 1.
T(n, k) = T(n, n-k).
Sum_{k=0..n} T(n,k) = [n=0] + 2*A026898(n-1). - G. C. Greubel, Mar 07 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 8, 4, 1;
1, 5, 17, 17, 5, 1;
1, 6, 32, 54, 32, 6, 1;
1, 7, 57, 145, 145, 57, 7, 1;
1, 8, 100, 368, 512, 368, 100, 8, 1;
1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1;
1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1;
1, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 1;
The interior Kurtosis, T(n,k) - binomial(n, k), is:
0;
0, 0;
0, 0, 0;
0, 0, 0, 0;
0, 0, 2, 0, 0;
0, 0, 7, 7, 0, 0;
0, 0, 17, 34, 17, 0, 0;
0, 0, 36, 110, 110, 36, 0, 0;
0, 0, 72, 312, 442, 312, 72, 0, 0;
0, 0, 141, 861, 1523, 1523, 861, 141, 0, 0;
0, 0, 275, 2410, 5182, 5998, 5182, 2410, 275, 0, 0;
0, 0, 538, 6908, 18455, 22939, 22939, 18455, 6908, 538, 0, 0;
MATHEMATICA
T[n_, k_]:= If[n==0, 1, (k^(n-k) + (n-k)^k)];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Sage) flatten([[1 if k==n else k^(n-k) + (n-k)^k for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 07 2021
(Magma) [k eq 0 select 1 else k^(n-k) + (n-k)^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 07 2021
CROSSREFS
Cf. A026898.
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 08 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 07 2021
STATUS
approved
a(1) = 1; a(n+1) = a(n)^n + n^a(n).
+10
0
1, 2, 8, 7073
OFFSET
1,2
COMMENTS
Next term is too large to display: 2.3459495195697547514*10^4258
The next term (a(5)) has 4259 digits. - Harvey P. Dale, Jul 18 2021
MATHEMATICA
a=1; lst={}; Do[a=a^n+n^a; AppendTo[lst, IntegerPart[a]], {n, 0, 4}]; lst
nxt[{n_, a_}] := {n + 1, a^n + n^a}; NestList[nxt, {1, 1}, 4][[All, 2]] (* Harvey P. Dale, Jul 18 2021 *)
CROSSREFS
Cf. A093898, A055652, A076980. - R. J. Mathar, May 29 2009
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, May 29 2009
STATUS
approved

Search completed in 0.007 seconds