[go: up one dir, main page]

login
Search: a054384 -id:a054384
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are equivalent if they are related by a rotation or reflection preserving the hexagonal lattice.
(Formerly M0420)
+10
24
1, 1, 2, 3, 2, 3, 3, 5, 4, 4, 3, 8, 4, 5, 6, 9, 4, 8, 5, 10, 8, 7, 5, 15, 7, 8, 9, 13, 6, 14, 7, 15, 10, 10, 10, 20, 8, 11, 12, 20, 8, 18, 9, 17, 16, 13, 9, 28, 12, 17, 14, 20, 10, 22, 14, 25, 16, 16, 11, 34, 12, 17, 21, 27, 16, 26, 13, 24, 18, 26, 13, 40, 14
OFFSET
1,3
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
From Andrey Zabolotskiy, Mar 10 2018: (Start)
If only primitive sublattices are considered, we get A003050.
Here only rotations and reflections preserving the parent hexagonal lattice are allowed. If reflections are not allowed, we get A145394. If any rotations and reflections are allowed, we get A300651.
In other words, the parent lattice of the sublattices under consideration has Patterson symmetry group p6mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A145394 (p6).
Rutherford says at p. 161 that his sequence for p6mm differs from this sequence, but it seems that with the current definition and terms of this sequence, this actually is his p6mm sequence, and the sequence he thought to be this one is actually A300651. Also, he says that a(n) != A300651(n) only when A002324(n) > 2 (first time happens at n = 49), but actually these two sequences differ at other terms, too, for example, at n = 42 (see illustration). (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217.
A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217. [Annotated and corrected scanned copy]
M. Bernstein, N. J. A. Sloane and P. E. Wright, On Sublattices of the Hexagonal Lattice, Discrete Math. 170 (1997) 29-39 (Abstract, pdf, ps).
Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th] (see Table 3).
Daejun Kim, Seok Hyeong Lee, and Seungjai Lee, Zeta functions enumerating subforms of quadratic forms, arXiv:2409.05625 [math.NT], 2024.
W. Kurth, Enumeration of Platonic maps on the torus, Discrete Math. 61 (1986), 71-83.
Andrey Zabolotskiy, Sublattices of the hexagonal lattice (illustrations for n = 1..7, 14)
Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
FORMULA
a(n) = Sum_{ m^2 | n } A003050(n/m^2).
a(n) = (A000203(n) + 2*A002324(n) + 3*A145390(n))/6. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ d|n } A112689(d+1). - Andrey Zabolotskiy, Aug 29 2019
a(n) = Sum_{ d|n } floor(d/6) + 1 - 1*[d == 2 or 6 (mod 12)] + 1*[d == 4 (mod 12)]. [Kurth] - Brahadeesh Sankarnarayanan, Feb 24 2023
MATHEMATICA
max = 73; A145390 = Drop[ CoefficientList[ Series[ Sum[(1 + Cos[n*Pi/2])*x^n/(1 - x^n), {n, 1, max}], {x, 0, max}], x], 1]; A002324[n_] := (dn = Divisors[n]; Count[dn, _?(Mod[#, 3] == 1 & )] - Count[dn, _?(Mod[#, 3] == 2 & )]); a[n_] := (DivisorSigma[1, n] + 2 A002324[n] + 3*A145390[[n]])/6; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Oct 11 2011, after given formula *)
KEYWORD
nonn,nice,easy
STATUS
approved
Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/3 to give the other.
+10
10
1, 1, 2, 3, 2, 4, 4, 5, 5, 6, 4, 10, 6, 8, 8, 11, 6, 13, 8, 14, 12, 12, 8, 20, 11, 14, 14, 20, 10, 24, 12, 21, 16, 18, 16, 31, 14, 20, 20, 30, 14, 32, 16, 28, 26, 24, 16, 42, 21, 31, 24, 34, 18, 40, 24, 40, 28, 30, 20, 56, 22, 32, 36, 43, 28, 48, 24, 42, 32, 48, 24, 65, 26, 38, 42, 48, 32, 56, 28, 62
OFFSET
1,3
COMMENTS
Also, apparently a(n) is the number of nonequivalent (up to lattice-preserving affine transformation) triangles on 2D square lattice of area n/2 [Karpenkov]. - Andrey Zabolotskiy, Jul 06 2017
From Andrey Zabolotskiy, Jan 18 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p6, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A003051 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/3; see illustration in links) as equivalent, we get A054384. If we count sublattices related by any rotation or reflection as equivalent, we get A300651.
Rutherford says at p. 161 that a(n) != A054384(n) only when A002324(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 14 (see illustration). (End)
LINKS
Oleg Karpenkov, Elementary notions of lattice trigonometry, Mathematica Scandinavica, vol.102, no.2, pp.161-205, (2008) [See page 203].
Oleg Karpenkov, Geometry of Lattice Angles, Polygons, and Cones, Thesis, Technische Universität Graz, 2009.
Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]
Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
Andrey Zabolotskiy, Sublattices of the hexagonal lattice (illustrations for n = 1..7, 14)
Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
FORMULA
a(n) = (A000203(n) + 2 * A002324(n))/3. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000086(n/m^2) + A157227(n/m^2) = A002324(n) + Sum_{ m: m^2|n } A157227(n/m^2). [Rutherford] - Andrey Zabolotskiy, Apr 23 2018
a(n) = Sum_{ d|n } A008611(d-1). - Andrey Zabolotskiy, Aug 29 2019
MATHEMATICA
a[n_] := (DivisorSigma[1, n] + 2 DivisorSum[n, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0] &])/3; Array[a, 80] (* Jean-François Alcover, Dec 03 2015 *)
PROG
(PARI)
A002324(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)));
A000203(n) = if( n<1, 0, sigma(n));
a(n) = (A000203(n) + 2 * A002324(n)) / 3;
\\ Joerg Arndt, Oct 13 2013
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 23 2009
EXTENSIONS
New name from Andrey Zabolotskiy, Dec 14 2017
STATUS
approved
Number of inequivalent sublattices of index n in a square lattice, where two sublattices are considered equivalent if one can be rotated to give the other.
+10
8
1, 1, 2, 2, 4, 3, 6, 4, 8, 7, 8, 6, 14, 7, 12, 10, 16, 9, 20, 10, 18, 16, 18, 12, 30, 13, 20, 20, 28, 15, 30, 16, 32, 24, 26, 20, 46, 19, 30, 26, 38, 21, 48, 22, 42, 33, 36, 24, 62, 29, 38, 34, 46, 27, 60, 30, 60, 40, 44, 30, 70, 31, 48, 52, 64, 33, 72, 34, 60, 48, 60
OFFSET
0,3
COMMENTS
If reflections are allowed, we get A054346. If only rotations that preserve the parent square lattice are allowed, we get A145392. The analog for a hexagonal lattice is A054384.
LINKS
Daejun Kim, Seok Hyeong Lee, and Seungjai Lee, Zeta functions enumerating subforms of quadratic forms, arXiv:2409.05625 [math.NT], 2024. See section 6.2 for the Dirichlet g.f. zeta^SL_{x^2+y^2}(s).
Andrey Zabolotskiy, Sublattices of the square lattice (illustrations for n = 1..6, 15, 25).
EXAMPLE
For n = 1, 2, 3, 4 the sublattices are generated by the rows of:
[1 0] [2 0] [2 0] [3 0] [3 0] [4 0] [4 0] [2 0] [2 0]
[0 1] [0 1] [1 1] [0 1] [1 1] [0 1] [1 1] [0 2] [1 2].
PROG
(SageMath)
# see A159842 for the definitions of dc, fin, u, N
def ff(m, k1, minus = True):
def f(n):
if n == 1: return 1
r = 1
for (p, k) in factor(n):
if p % 4 != m or k1 and k > 1: return 0
if minus: r *= (-1)**k
return r
return f
f1, f2, f3 = ff(1, True), ff(1, True, False), ff(3, False)
def a_SL(n):
return (dc(u, N, f1)(n) + dc(u, f3)(n)) / 2
print([a_SL(n) for n in range(1, 100)]) # Andrey Zabolotskiy, Sep 22 2024
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, May 06 2000
STATUS
approved
Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are considered equivalent if they are related by any rotation or reflection.
+10
5
1, 1, 2, 3, 2, 3, 3, 5, 4, 4, 3, 8, 4, 5, 6, 9, 4, 8, 5, 10, 8, 7, 5, 15, 7, 8, 9, 13, 6, 14, 7, 15, 10, 10, 10, 20, 8, 11, 12, 20, 8, 17, 9, 17, 16, 13, 9, 28, 11, 17, 14, 20, 10, 22, 14, 25, 16, 16, 11, 34, 12, 17, 20, 27, 16, 26, 13, 24, 18, 24, 13, 40
OFFSET
1,3
COMMENTS
If we count sublattices as equivalent only if they are related by a rotation, we get A054384 instead of this sequence. If we only allow rotations and reflections that preserve the parent (hexagonal) lattice, we get A003051; the first discrepancy is at n = 42 (see illustration), the second is at n = 49. If both restrictions are applied, i.e., only rotations preserving the parent lattice are allowed, we get A145394. The analog for square lattice is A054346.
Although A003051 has its counterpart A003050 which counts primitive sublattices only, this sequence has no such counterpart sequence because a primitive sublattice can turn to a non-primitive one via a non-parent-lattice-preserving rotation, so the straightforward definition of primitiveness does not work in this case.
LINKS
Daejun Kim, Seok Hyeong Lee, and Seungjai Lee, Zeta functions enumerating subforms of quadratic forms, arXiv:2409.05625 [math.NT], 2024. See section 6.1 for the Dirichlet g.f. zeta^GL_{x^2+xy+y^2}(s).
Andrey Zabolotskiy, Sublattices of the hexagonal lattice (illustrations for n = 1..7, 14)
PROG
(SageMath)
# See A159842 and A054384 for the definitions of functions used here
def a_GL(n):
return (a_SL(n) + dc(fin(1, -1, 0, 2), u, u, g2)(n)) / 2
print([a_GL(n) for n in range(1, 100)]) # Andrey Zabolotskiy, Sep 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrey Zabolotskiy, Mar 10 2018
STATUS
approved

Search completed in 0.010 seconds