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Abstract. A construction is given for all the regular maps of type {3,6} on the torus, with v
vertices, v being any integer > 0. We also find bounds for the number of those maps, in parti-
cular for the case in which the maps contain *‘normal’” Hamiltonian circuits. Using duality, the
results may be applied for the maps of type {6,3} 100.

1. Introduction

L The terms used here are commonly used in graph theory; however,
all of them are defined in [2]. A map on the torus is a cellular decom-
position of the torus imposed by some graph, the graph of the map. The
map is regular of type {p, q} if all the cells (the faces of the map) have
the same number p > 3 of edges and all the vertices have the same va-
lence ¢ > 3, i.e., for every vertex x in the map, there are exactly ¢
edges incident to x (a loop incident to x is counted twice in this con-
nection).

Let 7 be a regular map of type {p, ¢} on the torus, and letv, e, f be
the numbers of its vertices, edges and faces, respectively. From the iden-
tities g - v=2e¢ = p- fand from Euler’s equation v—e +f=0, it can be
easily deduced that {p, ¢} may have the values (3,6}, {4,4} and {6,3}
only.

An edge with the vertices @, b we denote by (ab), an n-gonal face with
the edges (a,a,), (a,a3), -, (a,a,) we denote by (a,ay, .v,a,), and a
path through the vertices a;, a5, ..., a,, in this order we denote by
(a),ay, ...nay ). Amap T is isomorphic to amap T, (T, = T,) if there
is a one-to-one correspondence ¢ between the vertices of 7 and the
vertices of T,, such that (ab) is an edge in T, if and only if p(ab) =
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(pla) p(b)) is an edge in 7’5, and (@ya;,....a,) is aface in T, if and only
ifpla,,...,a,) = (pla;)p(ay),...,p(a,)) is a face in T7,5.

In this paper, we investigate for every natural number v the construc-
tions and the number of all non-isomorphic regular maps of types {3, 6}
and {6, 3} on the torus, with v vertices. The map T* dual to a map T
of type {p, q} is obviously of type {g, p}, and for maps Ty, T, of the
same type, 7'} ~ T, holds if and only if Tf ~ T%. For a map of type
{3,6}, the equations e = 3v, f= v hold, and the number of all different
(i.e., non-isomorphic) maps of type {3, 6} with v vertices equals the
number of all different maps of type {6,3} with v faces (all of them
hexagons), being at the same time all different maps of type {6,3} with
2v vertices. (It follows immediately that there is no map of type (6, 3)
with an odd number of vertices.) Hence it is sufficient to carry out our
investigations for the maps of type {3, 6} only. Therefore, all of our
theorems deal with maps of type {3, 6}, leaving to the reader the formu-
lation of the dual theorems.

In Section 2, we describe a construction which gives, for any integer
v, all the regular maps of type {3,6} with v vertices, which have a nor-
mal circuit (defined in Section 2) through all the vertices (a normal
Hamiltonian circuit). We also find when such two constructions yield
the same map.

The same investigation for the general case, in which the map not
necessarily includes a normal Hamiltonian circuit, was carried out by
the author in a similar method, but the calculations in this case are much
longer and much more complicated. Therefore we give in Section 3 only
the results of these investigations. The author will supply the detailed
proofs to every interested reader.

In Section 4, we discuss the number X (v) of different regular maps
of type {3, 6} with v vertices, and we find bounds for the number A(v)
of those maps which have a normal Hamiltonian circuit.

A (regular) map is called also a (regular) pdlygonization if there are
no loops and double edges in the graph of the map, and the intersec-
tion of any two faces in the map is an edge, a vertex, or empty. Hence
the set of all faces, edges and vertices of a polygonization forms a topo-
logical complex. The map dual to a polygonization is also a polygoniza-
tion. A polygonization all of whose faces are triangles is called a triangu-
lation.

A good reason for distinguishing between maps and polygonizations
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is, that a map which is not a polygonization is clearly not rectilinearly
embeddable in R3, while many regular triangulations of type {3,6} on
the torus yield such an embedding (see [ 1, Theorem 7; 2, Theorem 3]),
and it is not known whether there exists any triangulation which does
not yield such an embedding [7].

What is the minimal number of vertices in a polygonization of the
torus? Clearly, in such a map all the faces are triangles. Euler’s formula
yields for such a map: ¢ = 3v, f = 2v. We also have e < (5), i.e. 3v <),
and this yields

v>T,e> 21, f> 14,

and equality in one of these yields an equality in the others too.

A polygonization K of the torus with 7 vertices does in fact exist,
and it is regular of type {3, 6}. Its graph is the complete graph on seven
vertices. The map K™ dual to K is known in the literature as a map which
needs seven colors for coloring it. (See, e.g., [4, Section 4.6].) As first
discovered by Mobius [9, pp. 552, 553] and rediscovered by Csdszar
[6], the linear embedding of this map K vields a polyhedron which,
like the simplex, has no diagonals.

In Sections 2 and 3, we discuss both maps and triangulations, and
the notes which refer to triangulations we enclose by brackets [ |.

Our use of the term “‘regular map’ agrees with Erréra [8] and Threl-
fall [10], but not with Brahana [3] and Coxeter-Moser {5, Chapter 8].
The three last authors are interested in regular maps from the standpoint
of group theory, and their methods do not seem useful for our purpose.

2. Maps with a normal Hamiltonian circuit!

The notion of a normal path in a map of type {6, 3} is essential for
the study of the combinatorial structure of those maps. Let 7" be a map
of type {6,3} on the torus, L a path in T, and x an inner vertex in L. L
is normal at x if of the four edges incident to x and not on L, two are on
one side of L, and the other two edges are on the other side of L. The

1 This section is included in the author’s Ph. D. dissertation, written under the supervision of
Professor H. Furstenberg, and submitted to the Hebrew University in June 1969.
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path L is normal if it is normal at every inner vertex. (A more rigorous
definition is given in [2].) It is by no means obvious that producing a
normal path in a “normal” manner as far as possible we get a normal
circuit. However, this is the case [2, Theorem 1], and hence it follows
immediately that considering the three different normal circuits through
an arbitrary vertex of 7, any other normal circuit is “parallel” to one of
those three circuits and has the same length.

Here we investigate, for any given v all the regular maps and triangula-
tions of type {3, 6} on the torus, with v vertices and with a normal Hamil-
tonian circuit.

Consider a regular map [triangulation] of type {3,6} on the torus
with v vertices and with a normal circuit L through all its vertices. De-
note the vertices a,, ..., a, according to their order on L. Let 72 be min-
imal such thata, is joined to a,, by an edge not on L. [For triangula-
tion we have: m # 1,2, v.] Together with (a,a,, ) there is another edge
A4 emerging from a; on the same side of L. It can be easily seen that
each triangle in the map has exactly one edge on L, hence it follows
A=(aya, ). Repeated application of this reasoning gives that, for
every | <j<vy, (@;a;4,, 1) and (a;a;, ,,) (all the indices are mod v and
ag is a,) are edges of the map and together with the edges on L they
form all the edges of the map. Therefore, we can represent our map as
shown in Fig. 1, and we denote this representation by T,‘;;l . If there is
no doubt about v, we write T, . (In Fig. 1, the identification of the
vertical sides of the rectangle is in the natural manner, while the iden-
tification of the lower and the upper sides is according to the notation
of the vertices, and needs some shifting.)

The vertices in T,, adjacent toa; (1 <i<v)are

a

v—m+i+l Commir > Qi s Qigy, Gy .

[In a triangulation those vertices are different from each other and dif-

am s Rism- ai+m Ay am
M//y b . m :
4 a8 a; a, a; ——-—= a_ & Ay ——— — a,, a, a,
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ferent than ;. Hence we have m # 1,2, v, which we know already, and
we have also

m#Fv+l,m#v=1,2m=v+2,2m+v.

Therefore, if v < 6, there is no such m at all, which was foreseen from a
note in Section 1.]
The trinagles in 7, are

(@141 ey - )> (@i iy ) | 1TSS 0

and those are also the trianglesin 7,_,,,,. Hence T,,_,,;, = T, . There-
fore it is sufficient to consider the case 1 < m <+(v+1). [For triangu-
lation: 1 < m < L. In particular, for v =7 we have only m = 3 (even
without demanding the existence of a normal circuit through all the
vertices. In this case, as for every prime v, its existence is assured (Con-
sequence 3.1), thus proving the uniqueness of the triangulation of
Csaszar].

As usual, (v, m) denotes the greatest common divisor of v and m.

Theorem 2.1. (i) For every regular map [triangulation] of type {3,6}
on the torus with v vertices and with a normal circuit through all the
vertices, there is an integer m, | <m < 4(w+1) [3 < m < Lvl, such that
the map [triangulation] is isomorphic to T, .

(i) For 1 <m #my <3+ 1) [3<m #Fmy < tu], T, = T,
holds if and only if one of the following congruences (1)—(4) is satis-
fied.

(1) my-m, =1 (modv),

(2)my - (my—1)=—1(modv),

(3) (m; —1)ym, = —1 (mod v),

(4) (m;—1)(my—1)=1 (mod v).

Proof. Part (i) of the theorem follows from the previous notes. We prove
the second part. First we prove the necessity of the condition.
Assume there is an isomorphism ¢: 7, — T,, , and for each

1 <i<wvdenote ¢(a;) = b;. For every k (1 < k <), the function
Y(a;) = a; (1 < i <) naturally induces an automorphism of T,,,. hence
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an 7 Ampel Amy-1) (my-11+1  8my (mp=1)+1 22 Anye

& Aaz a(V-l)(m2l)+1A 3, T Avezon, %,

v+l -my Sy+2-my Fy-myy (ma-13+1  Biusrl-my) tmo-13+1 Autl-mp, @

¢

a v

Diagram 1.

we can assume, without loss of generality, that b, = a,. There are six pos-
sibilities for b,:

(a)by =a,, (b)b2=am2, (C)bzzam2+1)

(dydy =a,, (by=ayy pn, (Db ay p,,

since b, is adjacent toa; in T, , and the above six vertices are the only
vertices adjacent toa; in 7}, . The function n(a;) = a,,,_; (1 <i<v)
naturally induces an automorphism of T, , - Hence it is sufficient to ex-
amine the cases (a), (b), (¢).

Case (a): b, =a,. Then clearly b, =a, for every 1 < i< v. Therefore,
the triangle (¢,a5a,, ,;)in T, is transformed into (a,a,a,, +1) 10
Tmz. But, in Tm2 the only two triangles with the edge (a,a,) are
(a,a5a,, ) and (@yaya,45_,,,) Hence m; +1=m, + 1, contradict-
ing the assumption m, # my, orm; + 1 =v+2-m,, ie., my; +m, =
v+ 1 contradicting the assumption 1 < m; # my < 3(v+1). Therefore
case (a) is impossible.

Case (b): b, = dp, - Then clearly b; = Q(m H—1)i-1)+) LOT every
1 <i <wv. Assume the Diagram 1.

In the two hexagons on the left there is a correspondence between
the vertices, given by the diagram. In the two hexagons on the right,
there is not necessarily such a correspondence. It may happen for
@ y(m,-1)+1 Lo beequala, ., ora,.

Therefore, if a,, 1 T @y my—1y+ 1> then m,+1 = my(m,y,—1)+1 (mod v),
ie., (m;—1)my,—1)=1 (mod v) and we have the congruence (4), and
ifa, =y g, —1y+)» thenv=(m,—1)m; + 1 (mod v), i.e., my(my—1)=
—1 (mod v) and we have the congruence (2).

Case (c): b, = p ,+1- The examination is as in case (b). Here, b, =
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¢
%lmtml_n” &mymy+1 Qv+2-my a;
Ay az a(v—l)m2+l arn2+1 = av+1—m2 2*1
Ay+1-my Sy42-m, Av-mpmgtl Flvrl-mpmp+i &y &my
\—r‘#_—/
Diagram 2.

Ay (i—1y+1 forevery 1 <i<wv. Hence the situation is as in Diagram 2.
Therefore, if @y =@, pm,+1, thenmym, + 1 =2 (modv), ie., mym; =1
(mod v) and this is the congruence (1), and if @y = a4 1_m ym,+1, then
(w+l—mymy +1=2(modv), ie., my(my—-1)=-1(modv) and this
1s the congruence (3).

Sufficiency. Assume that 1 <m, #nm, <3+ 1) [3<m; #m, <
}v] and that one of the congruences (1)—(4) is satisfied. We show that
this implies 7,, & T, . The triangles of 7, ~are

{(a,'a,'+]a,'+m1 ), (@418 441 —m ! I I<i<vl

In the case that (1) is satisfied, let ¢(q;) = Uy (= 1)41 5 and we show that
¢ naturally induces the desired isomorphism from 77, to 7, . The
triangles of Tml are mapped by ¢ to

(*) {(afnz(j_])+lam2!‘+1a’n2(i+ml_l)+l)’
(a.'n 2(i— l)+la”12[+lam2(v+f—m 1)+1 )I 1 S I S U} .

Letj=1+(i—1)m,. Since (v, m,) = 1 holds, then, when i ranges over
the numbers 1, 2, ..., v, alsoj (mod v) ranges over those numbers. Then

my(i—1)+1 = my(i+m—1)+1 =j+m my =j+1 (modv),
myitl =jtm,, my(uti-m )+l =j+my(v—m,)+tm,
=J+tm, -1 (modv).

Hence the set (*) is identical with the set

(@, @1 (@G, Gy ) 1T S TS V)
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and denoting ¢ = j+m, —1 (mod v), this is identical with the set
{(ajaj+1a/'+m2)| l S]S U} U {(a[a[+la[+l_m2)| 1 S { S U} ]

which is exactly the set of all triangles of 7, . Hence T, ~ T, In
the case that congruence (3) is satisfied, let ¢lay) =a,, J—1)+1 and let
j be defined as before. Then

I+(G+m) -1)my, =j+m;m,) =j+m,—1 (modv),
L+(ti—m)m, =j+m,y+@W—m;)m, =j+1 (modv),

and, as before, the set of all triangles of T,, | is mapped by ¢ to the set
of all triangles of 7}, .

In the case that one of the congruences (2), (4) is satisfied, let Pla;) =
Q- 1)(m,-1y+1- Lhe set of all triangles of 7, is transformed by ¢ to
the set

{(a(f—l)(m2—l)+1ai(m2—l)+la(i+m,—l)(m2—l)+l) )

(@G1ym 5 = +1%im , ~ 141 Cor iom omy—1y+1)] TS <UL

Letj= 1+ (i—1)(m,—1). We continue exactly as before (with 1, —1
replacing m, in the previous calculations).

Example. Let v = 20. In 7 and in Tg, through each vertex, there are
three normal circuits with the lengths 20, 20, 5. Therefore they are pos-
sibly isomorphic. But an examination of the congruences (1)—(4) in
Theorem 2.1 yields that none of these is satisfied by v = 20, my =4,

m, =9 hence T:‘,:O % Tgo. An examination of all the integers m such
that 1 <m <10 [3 < m < 9] shows that there are exactly eight dif-
ferent regular maps of type {3,6} [five different regular triangulations]
of the torus with 20 vertices and a normal path through all the vertices.
These are obtained form =1,2,3,4,5,6,9,10[m=3,4,5,6,9].
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al, a; al al ! !
m m+1 m+ 2 meEY . - S mnE T am =1 am
al|/ apl/ ah” a% af_i”anl” 3%

3. The general case

Let T be a regular map of type {3, 6} on the torus, with v vertices,
and let n be the length of the normal circuit with maximal length in 7'
From [2] and also from the discussion in Section 2, it follows that
r =v/n is an integer, and that 7 can be represented as in Fig. 2 (forr=1
this coincides with Fig. 1). We denote this representation by Tr‘;’r (or
simply by T, , if there is no danger of mistake). The vertices in T." are
a{. for 1 <i<n,1<j<r Asfor Fig. 1, the vertical sides of the rectangle
in Fig. 2 are identified in the natural way, while the identification of the
lower and the upper side must be carried out according to the notation
of the vertices, and — unless m = | — needs some shifting.

For 1 <j<r, the vertex ai: is adjacent to the six vertices

j-1 -1 j+1 i+l
ay s AN Gy
a} is adjacent to
r—1 r—1 r 1 1 I .
o Qs Ay 1 Qe G

and a,.1 1s adjacent to
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r r al a_2’ a2 1

ai+1—m’ai~m’ i—1’ 7 i+1’ai+l'

Here and in the following, the lower index is mod n (a’b 18 a/’;) and the
upper index is mod (a? isay).

In T’;’;r forr > 1, there are no loops, and double edges exist only if
n=2,orr=2and mequals 1 or n. Hence for t»" to be a triangulation
it is sufficient to require that » > 2 and if n = v then m # 1, n.

The normal circuit through (aiaf) is
ay...dlal a’zn,a,ll(mgl)ﬂ),
where /; is minimal with respect to the property [, (m—1)+1 = |
mod n), i.e., !/, =n/(n,m—1). Hence the length of this circuit is n, =
r-l; =vf(n,m—1). The normal circuit through (aia%) is

1 .2 roo 2 1
(al’a2’ o s Qs A 1 ""alz(r+m—l)+1) )

where /, is minimal with respect to the property [, (r+m—1)+1 =
1 (mod n),i.e., I, =n/(n, r+m—1). Hence the length of the circuit is
ny =r-1ly =v/(n, rtm—1).

Summarizing, through each vertex of T%" there are three normal
circuits of lengths

v - v
nom—1)""2 " (nrtm=1) "

Y

Note that this holds also forr = 1. (T"';’1 is represented in Fig. 1.) As
we required that n;, n, < n <, it follows that (n, m—1) > r,
(n, r+m—1) > r and, in particular, r < n =v/r, ie. r2 <.

Other simple consequences of this discussion are:

Consequence 3.1. Let v be prime. In each regular map of type 13,6} on
the torus with v vertices, there are three normal circuits, two o f which
pass through all the vertices and the third either passes through all the
vertices or is of length 1 (i.e., a loop).

Consequence 3.2. Let the three normal circuits through each vertex in a
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x(v) = ZJ v(v, r).

ru, r <v

We investigate the function v (v, r) by distinguishing two cases.
Case 1: r2 +v. In this case, ¥+n and it follows from Theorem 3.1 that
v(v, r) is the number of integers m such that

1< m< —r2+20)2F, (n,m=D)>r,(m,m+r—1)>r.

The last two conditions imply that m # 1,2, ...,r+ 1, hence the first
condition may be strengthened to

r+2<m< (v-r2+2r)/2r

from which it follows that

if 3r2 > vand r? tv,
v(u, r)

=0
< [u—3r2
= r

7 ] if3r2 <vandr?tv.

This upper bound is far from being the best, since, e.g., forv=84,r =3
its value is 9, while v(84, 3) = 2. (The two maps Tn§4’3 are obtained for
m=23,8.)

Case 2: r? | v. In this case, ¥ | # and it follows from Theorem 3.3 that

v, r)=vi(vr) e,y r),
where v, (v, r) is the number of integers m such that
(**) 1 <m<(@—r2+202r,rym—1, (n,m—1Y>r, (n, mtr—1)>r,

and v, (v, r) is the number of equivalence classes of the integers m such
that

1 <m< (=r?2+20/2r, r|lm—1,

where m| # m, are in the same class if and only if they satisfy one of
the congruences (5)—(8). Because of the geometrical nature of the prob-
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lems, this partition into classes is good, i.e., if #,, m, are in the class
A, and m,, my are in the class B, then 4 = B.

For v, (v, r), the second condition in (**) implies that in the last two
conditions there is a strict inequality that holds. Hence, as in case 1, the
first condition in (**) may be strengthened:

r+2<m<(uv-r?+2r/2r.

Since the number of the integers m satisfying the last inequality as well
asr | m—1 1is at least [(v—3#2)/2r2], we get

=0 if 3r2>v and r2|v,
v, (v, r)
< [(w=3r2)/2r] =[(w=3r2)/2r2] if 3r2<v and r? v.

Forv =84, r = 2, this upper bound for v, (v, ) is 9, while v, (84,2) = 2
(and the two maps are obtained for m = &, 13).

Thus, this upper bound for v (v, r) as well as the bound in the prev-
ious case is far from being satisfactory. However, the calculation of
v, (v, r) {as well as »(v, r) in the previous case), where v and r are given,
is not difficult. The calculation of v, (v, ) is more complicated and so
it is worthwhile to find bounds for it. This we shall do now.

Assume that r, v, m, m, are integers such that

rr v, rlmy—1, rlmy—1, 1<m; #my<(—r2+2r)[2r.

Denote v/r2 =5, m—1 =ar, my—1 = pr. Dividing the congruences
(5)—(8) by r, we get the congruences (9)—(12) below, and the function
v, (v, r) is found to be a function of the one variable s only. Call this
function A(s). Therefore, A(s) is the number of the equivalence classes
of the integers o, 0 < o < 4(s—1), such that & # 8 which satisfy
0<«,B<4i(s—1)arein the same class if and only if one of the fol-
lowing congruences (9)—(12) is satisfied.

(9) at+f+af=0(mods),

(10)aB+8+1=0(mods),

(I af+a+1=0(mods),

(12) ¢ = 1 (mod s).
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regular map of type {3,6) on the torus with v vertices be n, iy, iy with
ny,ny<n Thenn-ny >v,n-n, > .

The above discussion together with Theorem 2.1 form the proof of
a part of the next theorem. However, we omit the proof of the remain-
ing part, i.e., that 1 < m < ¥(n—r+2), as well as the proof of Theorem
3.3, since both proofs (in particular that of Theorem 3.3) yield very
long calculations. The proof are available from the author.

Theorem 3.1. Let T be a regular map of type {3,6} on the forus with
v vertices, and let n be the length of the normal circuit in T with max-
imal length. Then n|v and there is an integer m such that T ~ Tn';",
wherer=v/n, 1 <m <i(m—r+2),(n,m—1)2>r, (n,r+m—12>r;and
the three normal circuits through each vertex are of lengths

n:zn = — v - Y = —— v —_
Y, m=1Y "2 (nrtm—1)°

b It follows from Theorem 3.1 that if m # 1 thenr < m—1, hence

_p2

2r

r<tn-r==2

ie., 3r2 <uw.
The analogous theorem for regular triangulations is the suitable part
of Theorem 2.1 together with:

Theorem 3.2. Let T be a regular triangulation of the torus with v vertices,
in which the normal circuit of maximal length is of length n < v. Then
n+ 2, nlv, and there exists an integer m such that T = T>" where r =

v/n, 1 < m < S(n—r+2)(and if n =%v thenr+t1 <m <3(n—rt2),
(n,m—1)>r, (n,r+m—1)>r. The lengths of the normal circuits through
each vertex are as in Theorem 3.1.

The following question arises: Let v, i, r be as in Theorem 3.1, and
let 1 < m; <4(n—r+2), (n,m;=1)2r, (n,rtm;—1) >r(@i=1,2). When
does T,, =~ T,,, 7 Clearly for this to hold it is necessary that the num-
bers (n, m,—1), (n, rtm;—1) be equal (not necessarily in correspon-



. @

212 A. Altshuler, Regular maps on the torus

dence) to the numbers (n, m, —1), (n, r +m,—1). But is this condition
also sufficient? The next theorem deals with this question.

Theorem 3.3. /n the notation of Theorem 3.1, for m| # m, such that
V< m; <5n-—-r+2), (n, m—D)>r,(n, r+m—1)>r(i=1,2),

there holds T,;l’ = T,,'f,'g if and only if rin, rim| —1, rim, —1 and at least
one of the following congruences (5)—(8) is satisfied:

(5) my + my + (m; —1)(m,—1)/r = 2 (mod n) ,

(6) r + (r+m;—1)my—1)/r =0 (mod n),

(D r+(m; —1)r+m,—1)/r=0(modn),

(8) (m; —D)(my—1)/r=r (mod n) .
Moreover, if T#{: ~ T’;{l; holds, then at least one of the two inequalities
(n,m;—1) 2> r, (n,r+m;—1)>r, foreach i (i=1,2),is an equality. In
other words, in each T% r(l =1, 2) there are at least two normal circuits
of length n through each vertex.

Because of the notes at the beginning of this section, the theorem
analogous to the first part of Theorem 3.3 for regular triangulations
of the torus is the suitable part of Theorem 2.1 together with the follow-
ing.

Theorem 3.4. Using the notation of Theorem 3.2, for m,, m, such that
1 <m # my < (n—r+2)/2 (and if n = Lv thenm,, m, # 1),
(nm—=1)y>r, (nr+m;-1)>r(i=1,2),an isomorphism between the
friangulations Ty ", Ty " holds if and only if rin, rim —1, rim, —1 and
at least one of the congruence (5)—(8) holds.

4. The number of regular maps with a given number of vertices

Let x_(_u_)jgnote the number of regular maps of type {3, 6} on the
torus, with v verfices, which are different from each other up to isomor-
phism, and let v(v, 7) be the number of those maps in which the normal
circuit of maximal length is of length v/r. Also denote 1 = v/r. By Theo-
rem 3.1, we have
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Because of the symmetrical roles of & and 3, the congruences (10),
(11) are the same; nevertheless, meanwhile we prefer to leave both of
them.

For odd s > 3, the numbers 1 and 5(s—1) are in the same class be-
cause of (9) {or (10) also), hence nothing is lost if we demand
0<a+#B<%(s—1). But now it can be easily seen that no pair «,
will satisfy more than one of the congruences (9)—(12).

Note that O is the only member of its class, and the same with the
number 1. For a given «, 2 < o < ¥(5—1), the numbers § which share
the same class with « because of (9) are the integers in the set

{(ks—a)/(a+ 1)l 1 <k <[i(at2)], k isan integer} ,

and it can be easily verified that at most one such B exists. In a similar
manner, the integers 8 which share the same class with « because of
(10) are the integers in the set

{ks—D)/(a+ D] 1 <k<[4(at2)], kisan integer} ,

and at most one such 8 exists. Similarly we get that at most one 8 shares
the same class with o because of (11), and at most one § shares the same
class with « because of (12).

It follows that if there are / members in a class, then (é) < 5, hence
[ < 3,i.e., in every class there are at most three members. Therefore we
have fors > 3

Ls>Ns)> 2+ §(s—-5)=5(s+ 7).

Sometimes (e.g. fors =5, 11, 17, 23) the equality sign holds in the right
side of this inequality, and sometimes (e.g. fors = 8, 12, 24) the equal-
ity sign holds in the left side (see Table 1).

Fors < 3, we have

AMD=A2)=1, N3)=2

Note that A(v) is exactly the number of the (non-isomorphic) regular
maps of type {3,6} on the torus with v vertices and with a normal
Hamiltonian circuit. Thus we proved

—
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L ' J’ Table 1

Values of A(v) and x(v) (1 €v < 24)

v Alv) x(v) v A(v) x(v)
| i 1 13 4 4
2 1 1 14 5 <)
3 2 2 15 6 6
4 2 3 16 6 16
5 2 2 17 4 4
6 3 3 18 7 8
7 3 3 19 5 5
8 4 5 20 8 10
9 3 4 21 8 8

10 4 4 22 7 7

11 3 3 23 5 5

12 6 8 24 12 15

Theorem 4.1. The number N(V) of regular maps of type {3,6} on the
torus with exactly v vertices and with a normal Hamiltonian circuit
satisfies

AD=A2)=1, M3)=2, v>AW)2Ltw+7) (v>3).

The following theorem is a simple consequence of Consequence 3.2,
of the last part of Theorem 3.3 and of the previous discussion:

Theorem 4.2. Let v, n; (i = 1,2,3) be positive integers such that

v> n| > ny > ny. There exists a regular map of type (3,6} on the
torus with v vertices in which the lengths of the normal circuits through
each vertex are ny, ny, ny ifand only if njjlv (i=1,2,3),n, * ny 2 v,
and there exists an integer m, 1 <m <1+ ¥(n;, —(v/n)) such that n,,
ny equal (not necessarily correspondingly) the numbers

v/(ny, m=1), vf(n, % +m—-1).

(Then the map is Tn‘;""m' )
Moreover, if n| > n, there exists at most one such a map and if
1| = n, at most three such maps exist.
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