[go: up one dir, main page]

login
Search: a048553 -id:a048553
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n+1) is next smallest prime beginning with a(n), initial prime is 2.
+10
13
2, 23, 233, 2333, 23333, 2333321, 233332117, 2333321173, 233332117313, 23333211731399, 2333321173139903, 2333321173139903173, 23333211731399031733, 2333321173139903173301, 2333321173139903173301021
OFFSET
1,1
MATHEMATICA
b = 10; s = {{2}};
Do[NestWhile[# + 1 &, 0, ! (PrimeQ[FromDigits[tmp = Join[Last[s], (nn = #;
IntegerDigits[nn - Sum[b^n, {n, l = NestWhile[# + 1 &, 1, ! (nn - (Sum[b^n, {n, #}]) < 0) &] - 1}], b, l + 1])], b]]) &]; AppendTo[s, tmp], {20}]; Map[FromDigits, s] (* Peter J. C. Moses, Aug 06 2015 *)
CROSSREFS
Similar to but different from A069603.
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1999
STATUS
approved
a(n+1) is next smallest prime beginning with a(n), initial prime is a(0) = 7.
+10
5
7, 71, 719, 7193, 71933, 719333, 71933317, 719333177, 71933317711, 7193331771103, 71933317711039, 7193331771103939, 719333177110393913, 7193331771103939133, 719333177110393913323, 71933317711039391332309, 719333177110393913323097, 719333177110393913323097047
OFFSET
0,1
LINKS
MAPLE
f:= proc(n) option remember; local q, d, v;
q:=procname(n-1);
for d from 1 do
v:= nextprime(q*10^d);
if v < (q+1)*10^d then return v fi
od
end proc:
f(0):= 7:
map(f, [$0..20]); # Robert Israel, Jan 26 2020
MATHEMATICA
Nest[Function[{a, n}, Append[#, Catch@ Do[Do[If[PrimeQ@ #, Throw@ #; Break[], #] &@ FromDigits[n~Join~PadLeft[IntegerDigits[(5 j - 4 + Mod[3 j + 2, 4])/2], i]], {j, 4*10^(i - 1)}], {i, Infinity}]]] @@ {#, IntegerDigits[#[[-1]] ]} &, {7}, 17] (* Michael De Vlieger, Jan 26 2020 *)
PROG
(PARI)
next_A048552(p)=for(i=1, oo, my(q=nextprime(p*=10)); q-p>10^i||return(q))
A048552(n, p=7)=vector(n, i, i>1&&p=next_A048552(p); p) \\ M. F. Hasler, Jan 26 2020
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1999
STATUS
approved
a(n+1) is the next smallest prime beginning with a(n), initial prime is 3.
+10
4
3, 31, 311, 3119, 31193, 3119309, 31193093, 311930933, 31193093317, 311930933179, 3119309331797, 311930933179703, 31193093317970371, 3119309331797037107, 311930933179703710759, 31193093317970371075907
OFFSET
0,1
LINKS
MAPLE
f:= proc(n) local d, a;
for d from 1 do
for a from 10^d*n+1 by 2 to 10^d*(n+1) do
if isprime(a) then return a fi
od od
end proc:
R:= 3: x:= 3:
for i from 2 to 30 do
x:= f(x);
R:= R, x;
od:
R; # Robert Israel, Dec 13 2023
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1999
STATUS
approved
Primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime, starting with 3.
+10
1
3, 31, 311, 3119, 31193, 3119317, 31193171, 311931713, 3119317139, 311931713939, 31193171393933, 3119317139393353, 31193171393933531, 3119317139393353121, 311931713939335312127, 311931713939335312127113, 31193171393933531212711399, 31193171393933531212711399123
OFFSET
1,1
COMMENTS
a(n + 1) is the next smallest prime beginning with a(n). Initial term is 3. These are the primes arising in A069605.
EXAMPLE
a(1) = 3 by definition.
a(2) is the next smallest prime beginning with 3, so a(2) = 31.
a(3) is the next smallest prime beginning with 31, so a(3) = 311.
MATHEMATICA
A069605[1] = 3; A236527[1] = 3; A069605[n_] := A069605[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits[Flatten[Append[c, IntegerDigits[k]]]]], k += 2]; k]; A236527[n_] := A236527[n] = FromDigits[Flatten[IntegerDigits[A236527[n - 1]], IntegerDigits[A069605[n]]]]; Table[A236527[n], {n, 20}] (* Alonso del Arte, Jan 28 2014 based on Robert G. Wilson v's program for A069605 *)
nxt[n_]:=Module[{s=1}, While[CompositeQ[n*10^IntegerLength[s]+s], s+=2]; n*10^IntegerLength[s]+s]; NestList[nxt, 3, 20] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2020 *)
PROG
(Python)
import sympy
from sympy import isprime
def b(x):
..num = str(x)
..n = 1
..while n < 10**3:
....new_num = str(x) + str(n)
....if isprime(int(new_num)):
......print(int(new_num))
......x = new_num
......n = 1
....else:
......n += 1
b(3)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 27 2014
STATUS
approved
Start with 9; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
+10
1
9, 97, 971, 9719, 971917, 97191713, 9719171333, 971917133323, 9719171333237, 971917133323777, 97191713332377731, 9719171333237773159, 971917133323777315951, 97191713332377731595127, 971917133323777315951277, 971917133323777315951277269
OFFSET
1,1
COMMENTS
a(n+1) is the next smallest prime beginning with a(n). Initial term is 9. After a(1), these are the primes in A069611.
LINKS
EXAMPLE
a(1) = 9 by definition.
a(2) is the next smallest prime beginning with 9, so a(2) = 97.
a(3) is the next smallest prime beginning with 97, so a(3) = 971.
MAPLE
R:= 9: x:= 9:
for i from 2 to 20 do
for y from 1 by 2 do
z:= x*10^(1+ilog10(y)) + y;
if isprime(z) then
R:= R, z; x:= z; break
fi
od od:
R; # Robert Israel, Nov 22 2023
MATHEMATICA
next[p_]:=Module[{i=1, q}, While[!PrimeQ[q=10^IntegerLength[i]p+i], i+=2]; q];
NestList[next, 9, 15] (* Paolo Xausa, Nov 23 2023 *)
PROG
(Python)
import sympy
from sympy import isprime
def b(x):
num = str(x)
n = 1
while n < 10**3:
new_num = str(x) + str(n)
if isprime(int(new_num)):
print(int(new_num))
x = new_num
n = 1
else:
n += 1
b(9)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 29 2014
STATUS
approved
Start with 4; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
+10
0
4, 41, 419, 41911, 4191119, 41911193, 419111933, 41911193341, 4191119334151, 419111933415151, 41911193341515187, 4191119334151518719, 419111933415151871963, 41911193341515187196323, 4191119334151518719632313, 419111933415151871963231329
OFFSET
1,1
COMMENTS
a(n+1) is the next smallest prime beginning with a(n). Initial term is 4.
After a(1), these are the primes arising in A069606.
EXAMPLE
a(1) = 4 by definition.
a(2) is the next smallest prime beginning with 4, so a(2) = 41.
a(3) is the next smallest prime beginning with 41, so a(3) = 419.
...and so on.
MATHEMATICA
NestList[Module[{k=1}, While[!PrimeQ[#*10^IntegerLength[k]+k], k+=2]; #*10^IntegerLength[k]+ k]&, 4, 20] (* Harvey P. Dale, Jul 20 2024 *)
PROG
(Python)
import sympy
from sympy import isprime
def b(x):
..num = str(x)
..n = 1
..while n < 10**3:
....new_num = str(x) + str(n)
....if isprime(int(new_num)):
......print(int(new_num))
......x = new_num
......n = 1
....else:
......n += 1
b(4)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 27 2014
STATUS
approved
Primes arising in A069607.
+10
0
5, 53, 5323, 53231, 532313, 5323139, 532313921, 5323139219, 532313921921, 53231392192123, 5323139219212343, 53231392192123433, 5323139219212343323, 53231392192123433237, 5323139219212343323721, 532313921921234332372189, 53231392192123433237218937, 5323139219212343323721893721
OFFSET
1,1
COMMENTS
a(n+1) is the next smallest prime beginning with a(n). Initial term is 5.
EXAMPLE
a(1) = 5.
a(2) is the next smallest prime that begins with 5, so a(2) = 53.
a(3) is the next smallest prime that begins with 53, so a(3) = 5323.
...and so on.
PROG
(Python)
import sympy
from sympy import isprime
def b(x):
..num = str(x)
..n = 1
..while n < 10**3:
....new_num = str(x) + str(n)
....if isprime(int(new_num)):
......print(int(new_num))
......x = new_num
......n = 1
....else:
......n += 1
b(5)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 27 2014
STATUS
approved
Start with 6; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
+10
0
6, 61, 613, 6131, 613141, 61314119, 6131411917, 61314119171, 6131411917181, 613141191718127, 61314119171812789, 613141191718127893, 61314119171812789379, 6131411917181278937929, 61314119171812789379291, 61314119171812789379291111
OFFSET
1,1
COMMENTS
a(n+1) is the next smallest prime beginning with a(n). Initial term is 6. After a(1), these are the primes arising in A069608.
EXAMPLE
a(1) = 6 by definition.
a(2) is the next smallest prime beginning with 6, so a(2) = 61.
a(3) is the next smallest prime beginning with 61, so a(3) = 613.
PROG
(Python)
import sympy
from sympy import isprime
def b(x):
..num = str(x)
..n = 1
..while n < 10**3:
....new_num = str(x) + str(n)
....if isprime(int(new_num)):
......print(int(new_num))
......x = new_num
......n = 1
....else:
......n += 1
b(6)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 29 2014
STATUS
approved
Start with 8; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
+10
0
8, 83, 839, 83911, 839117, 83911721, 8391172123, 83911721233, 839117212337, 83911721233729, 839117212337293, 83911721233729399, 839117212337293999, 83911721233729399993, 839117212337293999931, 83911721233729399993139
OFFSET
1,1
COMMENTS
a(n+1) is the next smallest prime beginning with a(n). Initial term is 8. After a(1), these are the primes arising in A069610.
EXAMPLE
a(1) = 8 by definition.
a(2) is the next smallest prime beginning with 8, so a(2) = 83.
a(3) is the next smallest prime beginning with 83, so a(3) = 839.
MATHEMATICA
smp[n_]:=Module[{k=1}, While[!PrimeQ[n*10^IntegerLength[k]+k], k++]; n 10^IntegerLength[k]+ k]; NestList[smp, 8, 15] (* Harvey P. Dale, Aug 10 2024 *)
PROG
(Python)
import sympy
from sympy import isprime
def b(x):
..num = str(x)
..n = 1
..while n < 10**3:
....new_num = str(x) + str(n)
....if isprime(int(new_num)):
......print(int(new_num))
......x = new_num
......n = 1
....else:
......n += 1
b(8)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 29 2014
STATUS
approved

Search completed in 0.032 seconds