[go: up one dir, main page]

login
A236671
Start with 8; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
0
8, 83, 839, 83911, 839117, 83911721, 8391172123, 83911721233, 839117212337, 83911721233729, 839117212337293, 83911721233729399, 839117212337293999, 83911721233729399993, 839117212337293999931, 83911721233729399993139
OFFSET
1,1
COMMENTS
a(n+1) is the next smallest prime beginning with a(n). Initial term is 8. After a(1), these are the primes arising in A069610.
EXAMPLE
a(1) = 8 by definition.
a(2) is the next smallest prime beginning with 8, so a(2) = 83.
a(3) is the next smallest prime beginning with 83, so a(3) = 839.
MATHEMATICA
smp[n_]:=Module[{k=1}, While[!PrimeQ[n*10^IntegerLength[k]+k], k++]; n 10^IntegerLength[k]+ k]; NestList[smp, 8, 15] (* Harvey P. Dale, Aug 10 2024 *)
PROG
(Python)
import sympy
from sympy import isprime
def b(x):
..num = str(x)
..n = 1
..while n < 10**3:
....new_num = str(x) + str(n)
....if isprime(int(new_num)):
......print(int(new_num))
......x = new_num
......n = 1
....else:
......n += 1
b(8)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 29 2014
STATUS
approved