Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:46:15
%S 8,21,65,133,341,481,833,1045,1541,2465,2821,4033,4961,5461,6533,8321,
%T 10325,11041,13333,14981,15841,18565,20501,23585,28033,30401,31621,
%U 34133,35425,38081,48133,51221,56033,57685,66305,68101,73633,79381,83333,89441,95765
%N Octagonal numbers with prime indices.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OctagonalNumber.html">Octagonal Number</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeNumber.html">Prime Number</a>
%F a(n) = prime(n)*(3*prime(n) - 2) = A000040(n)*(3*A000040(n) - 2).
%F a(n) = A000567(A000040(n)).
%F a(n) = sigma_0(24^(prime(n) - 1)) = A000005(A009968(A000040(n) - 1)).
%t Table[Prime[n] (3 Prime[n] - 2), {n, 1, 45}]
%o (PARI) lista(nn) = forprime(p=2, nn, print1(p*(3*p-2), ", ")); \\ _Altug Alkan_, Jan 11 2016
%o (Magma) [NthPrime(n)*(3*NthPrime(n)-2): n in [1..50]]; // _Vincenzo Librandi_, Jan 12 2016
%o (Python)
%o from sympy import prime
%o def a(n): p = prime(n); return p*(3*p-2)
%o print([a(n) for n in range(1, 42)]) # _Michael S. Branicky_, Aug 21 2021
%Y Cf. A000040, A000567, A001248, A034953, A116995, A117961.
%K nonn,easy
%O 1,1
%A _Ilya Gutkovskiy_, Jan 11 2016