[go: up one dir, main page]

login
Search: a034941 -id:a034941
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of rooted triangular cacti with 2n+1 nodes (n triangles).
(Formerly M1448)
+10
7
1, 1, 2, 5, 13, 37, 111, 345, 1105, 3624, 12099, 41000, 140647, 487440, 1704115, 6002600, 21282235, 75890812, 272000538, 979310627, 3540297130, 12845634348, 46764904745, 170767429511, 625314778963, 2295635155206, 8447553316546, 31153444946778, 115122389065883
OFFSET
0,3
COMMENTS
a(n) is also the number of isomorphism classes of Fano Bott manifolds of complex dimension n (see [Cho-Lee-Masuda-Park]). - Eunjeong Lee, Jun 29 2021
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 305, (4.2.34).
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 73, (3.4.20).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
Yunhyung Cho, Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, On the enumeration of Fano Bott manifolds, arXiv:2106.12788 [math.AG], 2021. See Table 1 p. 8.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1 (1992) pp. 53-80.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
N. J. A. Sloane, Transforms
FORMULA
a(n)=b(2n+1). b shifts left under transform T where Tb = EULER(E_2(b)). E_2(b) has g.f. (B(x^2)+B(x)^2)/2.
a(n) ~ c * d^n / n^(3/2), where d = 3.90053254788870206167147120260433375638561926371844809... and c = 0.4861961460367182791173441493565088408563977498871021... - Vaclav Kotesovec, Jul 01 2021
MATHEMATICA
terms = 30;
nmax = 2 terms;
A[_] = 0; Do[A[x_] = x Exp[Sum[(A[x^n]^2 + A[x^(2n)])/(2n), {n, 1, terms}]] + O[x]^nmax // Normal, {nmax}];
DeleteCases[CoefficientList[A[x], x], 0] (* Jean-François Alcover, Sep 02 2018 *)
CROSSREFS
Column k=3 of A332648.
KEYWORD
nonn,eigen,nice
EXTENSIONS
Sequence extended by Paul Zimmermann, Mar 15 1996
Additional comments from Christian G. Bower
STATUS
approved
Number of triangular cacti with 2n+1 nodes (n triangles).
(Formerly M1152)
+10
5
1, 1, 1, 2, 4, 8, 19, 48, 126, 355, 1037, 3124, 9676, 30604, 98473, 321572, 1063146, 3552563, 11982142, 40746208, 139573646, 481232759, 1669024720, 5819537836, 20390462732, 71762924354, 253601229046, 899586777908, 3202234779826, 11435967528286, 40964243249727
OFFSET
0,4
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 306, (4.2.35).
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 73, (3.4.21).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1 (1992) pp. 53-80.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
FORMULA
a(n)=b(2n+1). A003080(n)=c(2n+1).
G.f.: B(x)=C(x)+(C(x^3)-C(x)^3)/3.
G.f.: g(x) + x*(g(x^3) - g(x)^3)/3 where g(x) is the g.f. of A003080. - Andrew Howroyd, Feb 18 2020
MATHEMATICA
terms = 31;
nmax = 2 terms;
A[_] = 0;
Do[A[x_] = x Exp[Sum[(A[x^n]^2 + A[x^(2n)])/(2n), {n, 1, terms}]] + O[x]^nmax // Normal, {nmax}];
g[x_] = (A[x] /. x^k_ -> x^((k - 1)/2)) - x + 1;
g[x] + x((g[x^3] - g[x]^3)/3) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2020, after Andrew Howroyd *)
CROSSREFS
Column k=3 of A332649.
KEYWORD
nonn,easy,nice
EXTENSIONS
Extended with formula by Christian G. Bower, 10/98
STATUS
approved
Number of unrooted labeled 4-cactus graphs on 3n+1 nodes.
+10
4
1, 3, 630, 756000, 2740537800, 22317642547200, 344030189461358400, 8979238155223784448000, 366881017725878906250000000, 22141857318039212329716940800000, 1887349497873286715447530129178400000, 219275034010568207287452830493455155200000
OFFSET
0,2
LINKS
Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
FORMULA
a(n) = (3*n+1)^(n-1)*(3*n)!/(2^n*n!). - Andrew Howroyd, Feb 17 2020
MATHEMATICA
Table[(3 n + 1)^(n-1) (3 n)! / (2^n n!), {n, 0, 15}] (* Vincenzo Librandi, Feb 19 2020 *)
PROG
(PARI) seq(n)={my(p=serlaplace(serreverse(x*exp(-x^3/2 + O(x^(3*n+1))))/x)); vector(n+1, k, polcoef(p, 3*k-3))} \\ Andrew Howroyd, Feb 17 2020
(Magma) [(3*n+1)^(n-1)*Factorial(3*n)/(2^n*Factorial(n)): n in [0..12]]; // Vincenzo Librandi, Feb 19 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 21 2017
EXTENSIONS
a(0) changed and terms a(7) and beyond from Andrew Howroyd, Feb 17 2020
STATUS
approved
Triangle read by rows: T(n,k) is the number of simple series-parallel matroids on [n] with rank k, 1 <= k <= n.
+10
4
1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 15, 1, 0, 0, 0, 0, 75, 1, 0, 0, 0, 0, 735, 280, 1, 0, 0, 0, 0, 0, 9345, 938, 1, 0, 0, 0, 0, 0, 76545, 77805, 2989, 1, 0, 0, 0, 0, 0, 0, 1865745, 536725, 9285, 1, 0, 0, 0, 0, 0, 0, 13835745, 27754650, 3334870, 28446, 1, 0
OFFSET
1,13
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Luis Ferroni and Matt Larson, Kazhdan-Lusztig polynomials of braid matroids, arXiv:2303.02253 [math.CO], 2023.
Nicholas Proudfoot, Yuan Xu, and Ben Young, On the enumeration of series-parallel matroids, arXiv:2406.04502 [math.CO], 2024.
FORMULA
E.g.f.: A(x,y) = log(1 + B(x,y)) where B(x,y) is the e.g.f. of A361353.
E.g.f.: A(x,y) = log(B(log(1 + x), y)/(1 + x)) where B(x,y) is the e.g.f. of A359985.
T(2*n+1, n+1) = A034941(n).
T(2*n, n+1) = A361282(n).
EXAMPLE
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 0, 1, 0;
0, 0, 15, 1, 0;
0, 0, 0, 75, 1, 0;
0, 0, 0, 735, 280, 1, 0;
0, 0, 0, 0, 9345, 938, 1, 0;
0, 0, 0, 0, 76545, 77805, 2989, 1, 0;
...
PROG
(PARI) \\ B gives A359985 as e.g.f.
B(n)= {exp(x*(1+y) + y*intformal(serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))}
T(n) = {my(v=Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))); vector(#v, n, Vecrev(v[n]/y, n))}
{ my(A=T(9)); for(i=1, #A, print(A[i])) }
CROSSREFS
Row sums are A007834.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 09 2023
STATUS
approved
E.g.f. satisfies: A(x) = exp(x^3*A(x)^3/3!).
+10
3
1, 1, 70, 28000, 33833800, 91842150400, 471920698849600, 4105733038511104000, 55918460253906250000000, 1124922893768186370457600000, 31962429471680921191680301600000, 1237813985055170041194334820761600000, 63474917512551971525535771981021376000000
OFFSET
0,3
LINKS
FORMULA
a(n) = (3*n+1)^(n-1) * (3*n)!/(n!*(3!)^n).
E.g.f.: (1/x)*Series_Reversion( x*exp(-x^3/3!) ).
Powers of e.g.f.: define a(n,m) by A(x)^m = Sum_{n>=0} a(n,m)*x^(3*n)/(3*n)!
then a(n,m) = m*(3*n+m)^(n-1) * (3*n)!/(n!*(3!)^n).
EXAMPLE
E.g.f.: A(x) = 1 + x^3/3! + 70*x^6/6! + 28000*x^9/9! + 33833800*x^12/12! + ...
where log(A(x)) = x^3*A(x)^3/3! and
A(x)^3 = 1 + 3*x^3/3! + 270*x^6/6! + 120960*x^9/9! + 155925000*x^12/12! + ...
MATHEMATICA
Table[(3*n + 1)^(n - 1)*(3*n)!/(n!*(3!)^n), {n, 0, 30}] (* G. C. Greubel, Jul 27 2018 *)
PROG
(PARI) {a(n)=(3*n)!*polcoeff(1/x*serreverse(x*(exp(-x^3/3!+x*O(x^(3*n))))), 3*n)}
(PARI) {a(n)=(3*n+1)^(n-1)*(3*n)!/(n!*(3!)^n)}
(Magma) [(3*n+1)^(n-1)*Factorial(3*n)/(6^n*Factorial(n)): n in [0..30]]; // G. C. Greubel, Jul 27 2018
(GAP) List([0..10], n->(3*n+1)^(n-1)*Factorial(3*n)/(Factorial(n)*Factorial(3)^n)); # Muniru A Asiru, Jul 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2011
STATUS
approved
E.g.f. satisfies: A(x) = exp(x^4*A(x)^4/4!).
+10
3
1, 1, 315, 975975, 12909521625, 495181420358625, 44035787449951171875, 7845481113748784765634375, 2526730187976408357560632640625, 1362965093449949100037985665872890625, 1160978904909328561005478318639484556796875
OFFSET
0,3
LINKS
FORMULA
a(n) = (4*n+1)^(n-1) * (4*n)!/(n!*(4!)^n).
E.g.f.: (1/x)*Series_Reversion( x*exp(-x^4/4!) ).
Powers of e.g.f.: define a(n,m) by A(x)^m = Sum_{n>=0} a(n,m)*x^(4*n)/(4*n)!
then a(n,m) = m*(4*n+m)^(n-1) * (4*n)!/(n!*(4!)^n).
EXAMPLE
E.g.f.: A(x) = 1 + x^4/4! + 315*x^8/8! + 975975*x^12/12! + ...
where log(A(x)) = x^4*A(x)^4/4! and
A(x)^4 = 1 + 4*x^4/4! + 1680*x^8/8! + 5913600*x^12/12! + 84084000000*x^16/16! + ...
MATHEMATICA
Table[(4*n + 1)^(n - 1)*(4*n)!/(n!*(4!)^n), {n, 0, 30}] (* G. C. Greubel, Jul 27 2018 *)
PROG
(PARI) {a(n)=(4*n)!*polcoeff(1/x*serreverse(x*(exp(-x^4/4!+x*O(x^(4*n))))), 4*n)}
(PARI) {a(n)=(4*n+1)^(n-1)*(4*n)!/(n!*(4!)^n)};
(Magma) [(4*n+1)^(n-1)*Factorial(4*n)/(24^n*Factorial(n)): n in [0..30]]; // G. C. Greubel, Jul 27 2018
(GAP) List([0..10], n->(4*n+1)^(n-1)*Factorial(4*n)/(Factorial(n)*Factorial(4)^n)); # Muniru A Asiru, Jul 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2011
STATUS
approved
E.g.f. satisfies: A(x) = exp(x^5*A(x)^5/5!).
+10
2
1, 1, 1386, 32288256, 4527372986136, 2373840824586206976, 3532226719132271834449776, 12455133709483299692008910094336, 91656142095228409912231665590704016256, 1280796898530759870923631204720457656538791936
OFFSET
0,3
FORMULA
a(n) = (5*n+1)^(n-1) * (5*n)! / (n!*(5!)^n).
E.g.f.: (1/x)*Series_Reversion( x*exp(-x^5/5!) ).
Powers of e.g.f.: define a(n,m) by A(x)^m = Sum_{n>=0} a(n,m)*x^(5*n)/(5*n)!
then a(n,m) = m*(5*n+m)^(n-1) * (5*n)!/(n!*(5!)^n).
EXAMPLE
E.g.f.: A(x) = 1 + x^5/5! + 1386*x^10/10! + 32288256*x^15/15! +...
where log(A(x)) = x^5*A(x)^5/5! and
A(x)^5 = 1 + 5*x^5/5! + 9450*x^10/10! + 252252000*x^15/15! + 38192529375000*x^20/20! +...
PROG
(PARI) {a(n)=(5*n)!*polcoeff(1/x*serreverse(x*(exp(-x^5/5!+x*O(x^(5*n))))), 5*n)}
(PARI) {a(n)=(5*n+1)^(n-1)*(5*n)!/(n!*(5!)^n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2011
STATUS
approved
Number of rank n+1 simple connected series-parallel matroids on [2n].
+10
1
0, 1, 75, 9345, 1865745, 554479695, 231052877055, 128938132548225, 92986310399407425, 84250567868935042575, 93744545254140599193375, 125717783386887888296925825, 200041202339679732328342670625, 372688996228146502285257581079375, 803768398459351988653830600415029375
OFFSET
1,3
LINKS
Luis Ferroni and Matt Larson, Kazhdan-Lusztig polynomials of braid matroids, arXiv:2303.02253 [math.CO], 2023.
EXAMPLE
For n=2 the a(2) = 1 rank 3 simple connected series-parallel matroid on [4] is the uniform matroid of rank 3.
PROG
(PARI) a(n) = T(2*n)[2*n][n+1] \\ T(n) defined in A361355. - Andrew Howroyd, Mar 09 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Matt Larson, Mar 06 2023
EXTENSIONS
Terms a(10)-a(15) from Andrew Howroyd, Mar 09 2023
STATUS
approved
Triangle T read by rows: T(n, k) = k*n^(n-k-1) with 0 < k < n.
+10
0
1, 3, 2, 16, 8, 3, 125, 50, 15, 4, 1296, 432, 108, 24, 5, 16807, 4802, 1029, 196, 35, 6, 262144, 65536, 12288, 2048, 320, 48, 7, 4782969, 1062882, 177147, 26244, 3645, 486, 63, 8, 100000000, 20000000, 3000000, 400000, 50000, 6000, 700, 80, 9, 2357947691, 428717762, 58461513, 7086244, 805255, 87846, 9317, 968, 99, 10
OFFSET
2,2
COMMENTS
T(n, k) is the number of forests of n - k edges that connect every other labeled vertex to one of the k roots (see Section 3 in Wästlund).
REFERENCES
Alfred Rényi, Some remarks on the theory of trees. MTA Mat. Kut. Inst. Kozl. (Publ. math. Inst. Hungar. Acad. Sci) 4 (1959), 73-85.
LINKS
Arthur Cayley, A theorem on trees, Quart. J. Pure Appl. Math. 23: 376-378 (1889). Also in The collected mathematical papers of Arthur Cayley vol 13.
John Riordan, Forests of labeled trees, Journal of Combinatorial Theory 5 (1968), 93-103.
Lajos Takács, On Cayley’s Formula for Counting Forests, Journal of Combinatorial Theory Series A 53, 321-323 (1990). See Equation 1.
Johan Wästlund, Padlock Solitaire: A martingale trick for combinatorial enumeration, arXiv:2008.13017 [math.CO], 2020. See Section 3.
MATHEMATICA
Table[k*n^(n-k-1), {n, 2, 11}, {k, 1, n-1}]//Flatten
CROSSREFS
Cf. A000027 (diagonal), A000169, A000272 (1st column), A000312, A007334 (2nd column), A023811 (row sums), A034941, A072590, A075363, A210725.
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Oct 20 2020
STATUS
approved

Search completed in 0.007 seconds