# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a361355 Showing 1-1 of 1 %I A361355 #14 Oct 15 2024 16:13:59 %S A361355 1,0,0,0,1,0,0,0,1,0,0,0,15,1,0,0,0,0,75,1,0,0,0,0,735,280,1,0,0,0,0, %T A361355 0,9345,938,1,0,0,0,0,0,76545,77805,2989,1,0,0,0,0,0,0,1865745,536725, %U A361355 9285,1,0,0,0,0,0,0,13835745,27754650,3334870,28446,1,0 %N A361355 Triangle read by rows: T(n,k) is the number of simple series-parallel matroids on [n] with rank k, 1 <= k <= n. %H A361355 Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50) %H A361355 Luis Ferroni and Matt Larson, Kazhdan-Lusztig polynomials of braid matroids, arXiv:2303.02253 [math.CO], 2023. %H A361355 Nicholas Proudfoot, Yuan Xu, and Ben Young, On the enumeration of series-parallel matroids, arXiv:2406.04502 [math.CO], 2024. %F A361355 E.g.f.: A(x,y) = log(1 + B(x,y)) where B(x,y) is the e.g.f. of A361353. %F A361355 E.g.f.: A(x,y) = log(B(log(1 + x), y)/(1 + x)) where B(x,y) is the e.g.f. of A359985. %F A361355 T(2*n+1, n+1) = A034941(n). %F A361355 T(2*n, n+1) = A361282(n). %e A361355 Triangle begins: %e A361355 1; %e A361355 0, 0; %e A361355 0, 1, 0; %e A361355 0, 0, 1, 0; %e A361355 0, 0, 15, 1, 0; %e A361355 0, 0, 0, 75, 1, 0; %e A361355 0, 0, 0, 735, 280, 1, 0; %e A361355 0, 0, 0, 0, 9345, 938, 1, 0; %e A361355 0, 0, 0, 0, 76545, 77805, 2989, 1, 0; %e A361355 ... %o A361355 (PARI) \\ B gives A359985 as e.g.f. %o A361355 B(n)= {exp(x*(1+y) + y*intformal(serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))} %o A361355 T(n) = {my(v=Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))); vector(#v, n, Vecrev(v[n]/y, n))} %o A361355 { my(A=T(9)); for(i=1, #A, print(A[i])) } %Y A361355 Row sums are A007834. %Y A361355 Cf. A140945, A359985, A361353. %Y A361355 Cf. A034941, A361282. %K A361355 nonn,tabl %O A361355 1,13 %A A361355 _Andrew Howroyd_, Mar 09 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE