Displaying 1-9 of 9 results found.
page
1
Numbers containing no prime digits.
+10
31
0, 1, 4, 6, 8, 9, 10, 11, 14, 16, 18, 19, 40, 41, 44, 46, 48, 49, 60, 61, 64, 66, 68, 69, 80, 81, 84, 86, 88, 89, 90, 91, 94, 96, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 114, 116, 118, 119, 140, 141, 144, 146, 148, 149, 160, 161, 164, 166, 168, 169
COMMENTS
If n-1 is represented as a base-6 number (see A007092) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= sum_{j=0..m} c(d(j))*10^j, where c(k)=0,1,4,6,8,9 for k=0..5. - Hieronymus Fischer, May 30 2012
FORMULA
a(n) = ((2*b_m(n)+1) mod 10 + floor((b_m(n)+4)/5) - floor((b_m(n)+1)/5))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 12 + floor(b_j(n)/6) - floor((b_j(n)+1)/6) + floor((b_j(n)+4)/6) - floor((b_j(n)+5)/6)))*10^j, where n>1, b_j(n)) = floor((n-1-6^m)/6^j), m = floor(log_6(n-1)).
Special values:
a(1*6^n+1) = 1*10^n.
a(2*6^n+1) = 4*10^n.
a(3*6^n+1) = 6*10^n.
a(4*6^n+1) = 8*10^n.
a(5*6^n+1) = 9*10^n.
a(2*6^n) = 2*10^n - 1.
a(n) = 10^log_6(n-1) for n=6^k+1, k>0.
Inequalities:
a(n) < 10^log_6(n-1) for 6^k+1<n<=2*6^k, k>0.
a(n) > 10^log_6(n-1) for 2*6^k<n<=6*6^k, k>=0.
a(n) <= 4*10^(log_6(n-1)-log_6(2)) = 1.641372618*10^(log_6(n-1)), equality holds for n=2*6^k+1, k>=0.
a(n) > 2*10^(log_6(n-1)-log_6(2)) = 0.820686309*10^(log_6(n-1)).
a(n) >= A202267(n), equality holds if the representation of n-1 as a base-6 number has only digits 0 or 1.
Lower and upper limits:
lim inf a(n)/10^log_6(n) = 2/10^log_6(2) = 0.820686309, for n --> inf.
lim sup a(n)/10^log_6(n) = 4/10^log_6(2) = 1.641372618, for n --> inf.
where 10^log_6(n) = n^1.2850972089...
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^6^j * (1-x^6^j)*((1+x^6^j)^4 + 4(1+2x^6^j) * x^(3*6^j))/(1-x^6^(j+1)).
Also: g(x) = (x/(1-x))*(h_(6,1)(x) + 3*h_(6,2)(x) + 2*h_(6,3)(x) + 2*h_(6,4)(x) + h_(6,5)(x) - 9*h_(6,6)(x)), where h_(6,k)(x) = sum_{j>=0} 10^j*x^(k*6^j)/(1-x^6^(j+1)). (End)
Sum_{n>=2} 1/a(n) = 3.614028405471074989720026361356036456697082276983705341077940360653303099111... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
EXAMPLE
166 has digits 1 and 6 and they are nonprime digits.
a(1000) = 8686.
a(10^4) = 118186
a(10^5) = 4090986.
a(10^6) = 66466686.
MATHEMATICA
npdQ[n_]:=And@@Table[FreeQ[IntegerDigits[n], i], {i, {2, 3, 5, 7}}]; Select[ Range[ 0, 200], npdQ] (* Harvey P. Dale, Jul 22 2013 *)
PROG
(Haskell)
a084984 n = a084984_list !! (n-1)
a084984_list = filter (not . any (`elem` "2357") . show ) [0..]
(Magma) [n: n in [0..169] | forall{d: d in [2, 3, 5, 7] | d notin Set(Intseq(n))}]; // Bruno Berselli, Jul 19 2011
AUTHOR
Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 27 2003
Numbers n such that every digit contains a loop (version 2).
+10
26
0, 4, 6, 8, 9, 40, 44, 46, 48, 49, 60, 64, 66, 68, 69, 80, 84, 86, 88, 89, 90, 94, 96, 98, 99, 400, 404, 406, 408, 409, 440, 444, 446, 448, 449, 460, 464, 466, 468, 469, 480, 484, 486, 488, 489, 490, 494, 496, 498, 499, 600, 604, 606, 608, 609, 640, 644, 646
COMMENTS
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,4,6,8,9 for k=0..4. - Hieronymus Fischer, May 30 2012
FORMULA
a(n) = ((2*b_m(n)) mod 8 + 4 + floor(b_m(n)/4) - floor((b_m(n)+1)/4))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 10 + 2*floor((b_j(n)+4)/5) - floor((b_j(n)+1)/5) -floor(b_j(n)/5)))*10^j, where n>1, b_j(n)) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 4*10^n.
a(2*5^n+1) = 6*10^n.
a(3*5^n+1) = 8*10^n.
a(4*5^n+1) = 9*10^n.
a(n) = 4*10^log_5(n-1) for n=5^k+1,
a(n) < 4*10^log_5(n-1), otherwise.
a(n) > 10^log_5(n-1) n>1.
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^5^j*(1-x^5^j)*(4 + 6x^5^j + 8(x^2)^5^j + 9(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = (x/(1-x))*(4*h_(5,1)(x) + 2*h_(5,2)(x) + 2*h_(5,3)(x) + h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)
EXAMPLE
a(1000) = 46999.
a(10^4) = 809999.
a(10^5) = 44499999.
a(10^6) = 668999999.
MATHEMATICA
FromDigits/@Tuples[{0, 4, 6, 8, 9}, 3] (* Harvey P. Dale, Aug 16 2018 *)
PROG
(PARI) is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019
CROSSREFS
Cf. A061371, A029581, A007091, A046034, A084544, A084984, A017042, A001743, A014261, A014263, A202267, A202268.
EXTENSIONS
Ambiguous comment deleted by Zak Seidov, May 25 2010
Numbers in which every digit contains at least one loop (version 1).
+10
24
0, 6, 8, 9, 60, 66, 68, 69, 80, 86, 88, 89, 90, 96, 98, 99, 600, 606, 608, 609, 660, 666, 668, 669, 680, 686, 688, 689, 690, 696, 698, 699, 800, 806, 808, 809, 860, 866, 868, 869, 880, 886, 888, 889, 890, 896, 898, 899, 900, 906, 908, 909, 960, 966, 968, 969
COMMENTS
If n-1 is represented as a base-4 number (see A007090) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,6,8,9 for k=0..3. - Hieronymus Fischer, May 30 2012
FORMULA
a(n) = ((b_m(n)+6) mod 9 + floor((b_m(n)+2)/3) - floor(b_m(n)/3))*10^m + Sum_{j=0..m-1} (b_j(n) mod 4 +5*floor((b_j(n)+3)/4) +floor((b_j(n)+2)/4)- 6*floor(b_j(n)/4)))*10^j, where n>1, b_j(n)) = floor((n-1-4^m)/4^j), m = floor(log_4(n-1)).
a(1*4^n+1) = 6*10^n.
a(2*4^n+1) = 8*10^n.
a(3*4^n+1) = 9*10^n.
a(n) = 6*10^log_4(n-1) for n=4^k+1,
a(n) < 6*10^log_4(n-1), otherwise.
a(n) > 10^log_4(n-1) for n>1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^4^j *(1-x^4^j)* (6 + 8x^4^j + 9(x^2)^4^j)/(1-x^4^(j+1)).
Also: g(x) = (x/(1-x))*(6*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*(x^4^j)^k/(1-(x^4^j)^4). (End)
EXAMPLE
a(1000) = 99896.
a(10^4) = 8690099.
a(10^5) = 680688699.
MATHEMATICA
Union[Flatten[Table[FromDigits/@Tuples[{0, 6, 8, 9}, n], {n, 3}]]] (* Harvey P. Dale, Sep 04 2013 *)
PROG
(PARI) is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 4, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019
Numbers in which all digits are nonprimes (1, 4, 6, 8, 9).
+10
18
1, 4, 6, 8, 9, 11, 14, 16, 18, 19, 41, 44, 46, 48, 49, 61, 64, 66, 68, 69, 81, 84, 86, 88, 89, 91, 94, 96, 98, 99, 111, 114, 116, 118, 119, 141, 144, 146, 148, 149, 161, 164, 166, 168, 169, 181, 184, 186, 188, 189, 191, 194, 196, 198, 199, 411, 414, 416, 418, 419
COMMENTS
If n-1 is represented as a zerofree base-5 number (see A084545) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=1,4,6,8,9 for k=1..5. - Hieronymus Fischer, May 30 2012
FORMULA
a(n) = Sum_{j=0..m-1} ((2*b_j(n)+1) mod 10 + floor((b_j(n)+4)/5) - floor((b_j(n)+1)/5))*10^j, where b_j(n))=floor((4*n+1-5^m)/(4*5^j)), m=floor(log_5(4*n+1)).
a(1*(5^n-1)/4) = 1*(10^n-1)/9.
a(2*(5^n-1)/4) = 4*(10^n-1)/9.
a(3*(5^n-1)/4) = 6*(10^n-1)/9.
a(4*(5^n-1)/4) = 8*(10^n-1)/9.
a(5*(5^n-1)/4) = 10^n-1.
a(n) = (10^log_5(4*n+1)-1)/9 for n=(5^k-1)/4, k>0.
a(n) <= 36/(9*2^log_5(9)-1)*(10^log_5(4*n+1)-1)/9 for n>0, equality holds for n=2.
a(n) > 0.776*10^log_5(4*n+1)-1)/9 for n>0.
a(n) >= A001742(n), equality holds for n=(5^k-1)/4, k>0.
G.f.: g(x) = (x^(1/4)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(5/4)*(1-z(j))*(1 + 4z(j) + 6*z(j)^2 + 8*z(j)^3 + 9*z(j)^4)/(1-z(j)^5), where z(j)=x^5^j.
Also: g(x) = (1/(1-x))*(h_(5,0)(x) + 3h_(5,1)(x) + 2h_(5,2)(x) + 2h_(5,3)(x) + h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*x^((5^(j+1)-1)/4)*(x^5^j)^k/(1-(x^5^j)^5). (End)
Sum_{n>=1} 1/a(n) = 2.897648425695540438556738520657902585305276107220152307051361916356295164643... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
EXAMPLE
a(1000) = 14889.
a(10^4) = 498889
a(10^5) = 11188889.
a(10^6) = 446888889. (End)
MATHEMATICA
Table[FromDigits/@Tuples[{1, 4, 6, 8, 9}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)
PROG
(Magma) [n: n in [1..500] | Set(Intseq(n)) subset [1, 4, 6, 8, 9]]; // Vincenzo Librandi, Dec 17 2018
CROSSREFS
Cf. A046034 (numbers in which all digits are primes), A001742 (numbers in which all digits are noncomposites excluding 0), A202267 (numbers in which all digits are noncomposites), A084984 (numbers in which all digits are nonprimes), A029581 (numbers in which all digits are composites).
Numbers whose digits contain no loops (version 2).
+10
16
1, 2, 3, 5, 7, 11, 12, 13, 15, 17, 21, 22, 23, 25, 27, 31, 32, 33, 35, 37, 51, 52, 53, 55, 57, 71, 72, 73, 75, 77, 111, 112, 113, 115, 117, 121, 122, 123, 125, 127, 131, 132, 133, 135, 137, 151, 152, 153, 155, 157, 171, 172, 173, 175, 177, 211, 212, 213, 215
COMMENTS
Numbers all of whose decimal digits are in {1,2,3,5,7}.
If n is represented as a zerofree base-5 number (see A084545) according to n = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=1,2,3,5,7 for k=1..5. - Hieronymus Fischer, May 30 2012
FORMULA
a(n) = Sum_{j=0..m-1} ((2*b_j(n)+1) mod 10 + 2*floor(b_j(n)/5) - floor((b_j(n)+3)/5) - floor((b_j(n)+4)/5))*10^j, where b_j(n) = floor((4*n+1-5^m)/(4*5^j)), m = floor(log_5(4*n+1)).
a(1*(5^n-1)/4) = 1*(10^n-1)/9.
a(2*(5^n-1)/4) = 2*(10^n-1)/9.
a(3*(5^n-1)/4) = 1*(10^n-1)/3.
a(4*(5^n-1)/4) = 5*(10^n-1)/9.
a(5*(5^n-1)/4) = 7*(10^n-1)/9.
a(n) = (10^log_5(4*n+1)-1)/9 for n=(5^k-1)/4, k > 0.
a(n) < (10^log_5(4*n+1)-1)/9 for (5^k-1)/4 < n < (5^(k+1)-1)/4, k > 0.
a(n) <= A202268(n), equality holds for n=(5^k-1)/4, k > 0.
G.f.: g(x) = (x^(1/4)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(5/4)*(1 + z(j) + z(j)^2 + 2*z(j)^3 + 2*z(j)^4 - 7*z(j)^5)/(1-z(j)^5), where z(j) = x^5^j.
Also g(x) = (x^(1/4)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(5/4)*(1-z(j))*(1 + 2z(j) + 3*z(j)^2 + 5*z(j)^3 + 7*z(j)^4)/(1-z(j)^5), where z(j) = x^5^j.
Also: g(x)=(1/(1-x))*(h_(5,0)(x) + h_(5,1)(x) + h_(5,2)(x) + 2*h_(5,3)(x) + 2*h_(5,4)(x) - 7*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*x^((5^(j+1)-1)/4)*(x^5^j)^k/(1-(x^5^j)^5). (End)
Sum_{n>=1} 1/a(n) = 3.961674246441345455010500439753914974057344229353697593567607096540565407371... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
EXAMPLE
a(10^3) = 12557.
a(10^4) = 275557.
a(10^5) = 11155557.
a(10^6) = 223555557. (End)
MATHEMATICA
nlQ[n_]:=And@@(MemberQ[{1, 2, 3, 5, 7}, #]&/@IntegerDigits[n]); Select[Range[ 160], nlQ] (* Harvey P. Dale, Mar 23 2012 *)
Table[FromDigits/@Tuples[{1, 2, 3, 5, 7}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)
PROG
(Perl) for (my $k = 1; $k < 1000; $k++) {print "$k, " if ($k =~ m/^[12357]+$/)} # Charles R Greathouse IV, Jun 10 2011
(Magma) [n: n in [1..500] | Set(Intseq(n)) subset [1, 2, 3, 5, 7]]; // Vincenzo Librandi, Dec 17 2018
Semiprimes with semiprime digits (digits 4, 6, 9 only).
+10
16
4, 6, 9, 46, 49, 69, 94, 446, 466, 469, 649, 669, 694, 699, 949, 4449, 4469, 4499, 4666, 4694, 4699, 4946, 6499, 6646, 6649, 6694, 6999, 9446, 9449, 9466, 9469, 9946, 9969, 44494, 44669, 44949, 44966, 44969, 44999, 46469, 46666, 46946, 46969, 46994
COMMENTS
Numbers n such that all digits of n are elements of A001358 and n is an element of A001358.
Numbers n such that n is an element of A107665 and n is an element of A001358.
Conjecture: almost all terms (asymptotic density 1) end with 9 and have either 3k+1 or 3k+2 occurrences of the digit 4 for some nonnegative k. (Otherwise they'd be divisible by 2 or 3 and these semiprimes would be expected to be rare; the sequence is too thin to prove this directly.) - Charles R Greathouse IV, Nov 12 2021
EXAMPLE
4 = 2^2
6 = 2 * 3
9 = 3^2
46 = 2 * 23
49 = 7^2
69 = 3 * 23
94 = 2 * 47
MATHEMATICA
fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2 && Union[ Join[{4, 6, 9}, IntegerDigits[n]]] == {4, 6, 9}; Select[ Range[ 47000], fQ[ # ] &] (* Robert G. Wilson v, May 27 2005 *)
Flatten[Table[Select[FromDigits/@Tuples[{4, 6, 9}, n], PrimeOmega[#]==2&], {n, 5}]] (* Harvey P. Dale, Jun 14 2015 *)
Numbers in which all digits are noncomposites (1, 2, 3, 5, 7) or 0.
+10
16
0, 1, 2, 3, 5, 7, 10, 11, 12, 13, 15, 17, 20, 21, 22, 23, 25, 27, 30, 31, 32, 33, 35, 37, 50, 51, 52, 53, 55, 57, 70, 71, 72, 73, 75, 77, 100, 101, 102, 103, 105, 107, 110, 111, 112, 113, 115, 117, 120, 121, 122, 123, 125, 127, 130, 131, 132, 133, 135, 137, 150
COMMENTS
If n-1 is represented as a base-6 number (see A007092) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= sum_{j=0..m} c(d(j))*10^j, where c(k)=0,1,2,3,5,7 for k=0..5. - Hieronymus Fischer, May 30 2012
FORMULA
a(n) = (b_m(n)+1) mod 10 + floor((b_m(n)+2)/5) + floor((b_m(n)+1)/5) - 2*floor(b_m(n)/5))*10^m + sum_{j=0..m-1} (b_j(n) mod 6 + floor((b_j(n)+1)/6) + floor((b_j(n)+2)/6) - 2*floor(b_j(n)/6)))*10^j, where n>1, b_j(n)) = floor((n-1-6^m)/6^j), m = floor(log_6(n-1)).
a(1*6^n+1) = 1*10^n.
a(2*6^n+1) = 2*10^n.
a(3*6^n+1) = 3*10^n.
a(4*6^n+1) = 5*10^n.
a(5*6^n+1) = 7*10^n.
a(n) = 10^log_6(n-1) for n=6^k+1, k>0,
a(n) < 10^log_6(n-1) else.
a(n) <= A084984(n), equality holds if the representation of n-1 as a base-6 number only has digits 0 or 1.
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^6^j *(1-x^6^j)* (1 + 2x^6^j + 3(x^2)^6^j + 5(x^3)^6^j + 7(x^4)^6^j)/(1-x^6^(j+1)).
Also: g(x) = (x/(1-x))*(h_(6,1)(x) + h_(6,2)(x) + h_(6,3)(x) + 2*h_(6,4)(x) + 2*h_(6,5)(x) - 7*h_(6,6)(x)), where h_(6,k)(x) = sum_{j>=0} 10^j*x^(k*6^j)/(1-x^6^(j+1)). (End)
Sum_{n>=2} 1/a(n) = 4.945325883472729555972742252181522711968119529132581193614012706741310832798... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
EXAMPLE
a(1000) = 5353.
a(10^4) = 115153
a(10^5) = 2070753.
a(10^6) = 33233353.
MATHEMATICA
Union[Flatten[FromDigits/@Tuples[{0, 1, 2, 3, 5, 7}, 3]]] (* Harvey P. Dale, Mar 11 2015 *)
CROSSREFS
Cf. A046034 (numbers in which all digits are primes), A001742 (numbers in which all digits are noncomposites excluding 0), A202268 (numbers in which all digits are nonprimes excluding 0), A084984 (numbers in which all digits are nonprimes), A029581 (numbers in which all digits are composites).
Numbers with semiprime digits (digits 4, 6, 9 only).
+10
9
4, 6, 9, 44, 46, 49, 64, 66, 69, 94, 96, 99, 444, 446, 449, 464, 466, 469, 494, 496, 499, 644, 646, 649, 664, 666, 669, 694, 696, 699, 944, 946, 949, 964, 966, 969, 994, 996, 999, 4444, 4446, 4449, 4464, 4466, 4469, 4494, 4496, 4499, 4644, 4646, 4649, 4664
MATHEMATICA
Select[Range[5000], Union[Pick[DigitCount[#], {1, 1, 1, 0, 1, 0, 1, 1, 0, 1}, 1]] == {0}&] (* Harvey P. Dale, Oct 21 2011 *)
Flatten[Table[FromDigits/@Tuples[{4, 6, 9}, n], {n, 4}]] (* Harvey P. Dale, Oct 21 2014 *)
Composite numbers in which all substrings are composite.
+10
9
4, 6, 8, 9, 44, 46, 48, 49, 64, 66, 68, 69, 84, 86, 88, 94, 96, 98, 99, 444, 446, 448, 464, 466, 468, 469, 484, 486, 488, 494, 496, 498, 644, 646, 648, 649, 664, 666, 668, 669, 684, 686, 688, 694, 696, 698, 699, 844, 846, 848, 849, 864, 866, 868, 869, 884, 886
MATHEMATICA
sub[n_] := Block[{d = IntegerDigits[n]}, Union@ Reap[ Do[Sow@ FromDigits@ Take[d, {i, j}], {j, Length@ d}, {i, j}]][[2, 1]]]; Select[ Range@ 900, Union[{4, 6, 8, 9}, IntegerDigits[#]] == {4, 6, 8, 9} && AllTrue[sub[#], CompositeQ] &] (* Giovanni Resta, Dec 20 2019 *)
PROG
(PARI) See Links section.
CROSSREFS
Cf. A085823 (primes in which all substrings are primes), A068669 (noncomposite numbers in which all substrings are noncomposite), A062115 (nonprimes in which all substrings are nonprimes).
EXTENSIONS
Incorrect Haskell program deleted by M. F. Hasler, Dec 20 2019
Search completed in 0.009 seconds
|