OFFSET
1,2
COMMENTS
Supersequence of A029581.
Subsequence of A084984.
If n-1 is represented as a zerofree base-5 number (see A084545) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=1,4,6,8,9 for k=1..5. - Hieronymus Fischer, May 30 2012
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 1..10000
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = Sum_{j=0..m-1} ((2*b_j(n)+1) mod 10 + floor((b_j(n)+4)/5) - floor((b_j(n)+1)/5))*10^j, where b_j(n))=floor((4*n+1-5^m)/(4*5^j)), m=floor(log_5(4*n+1)).
a(1*(5^n-1)/4) = 1*(10^n-1)/9.
a(2*(5^n-1)/4) = 4*(10^n-1)/9.
a(3*(5^n-1)/4) = 6*(10^n-1)/9.
a(4*(5^n-1)/4) = 8*(10^n-1)/9.
a(5*(5^n-1)/4) = 10^n-1.
a(n) = (10^log_5(4*n+1)-1)/9 for n=(5^k-1)/4, k>0.
a(n) <= 36/(9*2^log_5(9)-1)*(10^log_5(4*n+1)-1)/9 for n>0, equality holds for n=2.
a(n) > 0.776*10^log_5(4*n+1)-1)/9 for n>0.
a(n) >= A001742(n), equality holds for n=(5^k-1)/4, k>0.
G.f.: g(x) = (x^(1/4)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(5/4)*(1-z(j))*(1 + 4z(j) + 6*z(j)^2 + 8*z(j)^3 + 9*z(j)^4)/(1-z(j)^5), where z(j)=x^5^j.
Also: g(x) = (1/(1-x))*(h_(5,0)(x) + 3h_(5,1)(x) + 2h_(5,2)(x) + 2h_(5,3)(x) + h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*x^((5^(j+1)-1)/4)*(x^5^j)^k/(1-(x^5^j)^5). (End)
Sum_{n>=1} 1/a(n) = 2.897648425695540438556738520657902585305276107220152307051361916356295164643... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
EXAMPLE
From Hieronymus Fischer, May 30 2012: (Start)
a(1000) = 14889.
a(10^4) = 498889
a(10^5) = 11188889.
a(10^6) = 446888889. (End)
MATHEMATICA
Table[FromDigits/@Tuples[{1, 4, 6, 8, 9}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)
PROG
(Magma) [n: n in [1..500] | Set(Intseq(n)) subset [1, 4, 6, 8, 9]]; // Vincenzo Librandi, Dec 17 2018
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Jaroslav Krizek, Dec 25 2011
STATUS
approved