[go: up one dir, main page]

login
A202268
Numbers in which all digits are nonprimes (1, 4, 6, 8, 9).
18
1, 4, 6, 8, 9, 11, 14, 16, 18, 19, 41, 44, 46, 48, 49, 61, 64, 66, 68, 69, 81, 84, 86, 88, 89, 91, 94, 96, 98, 99, 111, 114, 116, 118, 119, 141, 144, 146, 148, 149, 161, 164, 166, 168, 169, 181, 184, 186, 188, 189, 191, 194, 196, 198, 199, 411, 414, 416, 418, 419
OFFSET
1,2
COMMENTS
Supersequence of A029581.
Subsequence of A084984.
If n-1 is represented as a zerofree base-5 number (see A084545) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=1,4,6,8,9 for k=1..5. - Hieronymus Fischer, May 30 2012
LINKS
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = Sum_{j=0..m-1} ((2*b_j(n)+1) mod 10 + floor((b_j(n)+4)/5) - floor((b_j(n)+1)/5))*10^j, where b_j(n))=floor((4*n+1-5^m)/(4*5^j)), m=floor(log_5(4*n+1)).
a(1*(5^n-1)/4) = 1*(10^n-1)/9.
a(2*(5^n-1)/4) = 4*(10^n-1)/9.
a(3*(5^n-1)/4) = 6*(10^n-1)/9.
a(4*(5^n-1)/4) = 8*(10^n-1)/9.
a(5*(5^n-1)/4) = 10^n-1.
a(n) = (10^log_5(4*n+1)-1)/9 for n=(5^k-1)/4, k>0.
a(n) <= 36/(9*2^log_5(9)-1)*(10^log_5(4*n+1)-1)/9 for n>0, equality holds for n=2.
a(n) > 0.776*10^log_5(4*n+1)-1)/9 for n>0.
a(n) >= A001742(n), equality holds for n=(5^k-1)/4, k>0.
a(n) = A084545(n) iff all digits of A084545(n) are 1, a(n)>A084545(n), else.
G.f.: g(x) = (x^(1/4)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(5/4)*(1-z(j))*(1 + 4z(j) + 6*z(j)^2 + 8*z(j)^3 + 9*z(j)^4)/(1-z(j)^5), where z(j)=x^5^j.
Also: g(x) = (1/(1-x))*(h_(5,0)(x) + 3h_(5,1)(x) + 2h_(5,2)(x) + 2h_(5,3)(x) + h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*x^((5^(j+1)-1)/4)*(x^5^j)^k/(1-(x^5^j)^5). (End)
Sum_{n>=1} 1/a(n) = 2.897648425695540438556738520657902585305276107220152307051361916356295164643... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
EXAMPLE
From Hieronymus Fischer, May 30 2012: (Start)
a(1000) = 14889.
a(10^4) = 498889
a(10^5) = 11188889.
a(10^6) = 446888889. (End)
MATHEMATICA
Table[FromDigits/@Tuples[{1, 4, 6, 8, 9}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)
PROG
(Magma) [n: n in [1..500] | Set(Intseq(n)) subset [1, 4, 6, 8, 9]]; // Vincenzo Librandi, Dec 17 2018
CROSSREFS
Cf. A046034 (numbers in which all digits are primes), A001742 (numbers in which all digits are noncomposites excluding 0), A202267 (numbers in which all digits are noncomposites), A084984 (numbers in which all digits are nonprimes), A029581 (numbers in which all digits are composites).
Sequence in context: A366451 A190485 A105803 * A084985 A068631 A338461
KEYWORD
nonn,base,easy
AUTHOR
Jaroslav Krizek, Dec 25 2011
STATUS
approved