[go: up one dir, main page]

login
Search: a017713 -id:a017713
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows, giving the numbers T(n,m) = binomial(n+1, m+1); or, Pascal's triangle A007318 with its left-hand edge removed.
+10
48
1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7, 1, 8, 28, 56, 70, 56, 28, 8, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 12, 66, 220, 495, 792, 924, 792
OFFSET
0,2
COMMENTS
T(n,m) is the number of m-faces of a regular n-simplex.
An n-simplex is the n-dimensional analog of a triangle. Specifically, a simplex is the convex hull of a set of (n + 1) affinely independent points in some Euclidean space of dimension n or higher, i.e., a set of points such that no m-plane contains more than (m + 1) of them. Such points are said to be in general position.
Reversing the rows gives A074909, which as a linear sequence is essentially the same as this.
From Tom Copeland, Dec 07 2007: (Start)
T(n,k) * (k+1)! = A068424. The comment on permuted words in A068424 shows that T is related to combinations of letters defined by connectivity of regular polytope simplexes.
If T is the diagonally-shifted Pascal matrix, binomial(n+m, k+m), for m=1, then T is a fundamental type of matrix that is discussed in A133314 and the following hold.
The infinitesimal matrix generator is given by A132681, so T = LM(1) of A132681 with inverse LM(-1).
With a(k) = (-x)^k / k!, T * a = [ Laguerre(n,x,1) ], a vector array with index n for the Laguerre polynomials of order 1. Other formulas for the action of T are given in A132681.
T(n,k) = (1/n!) (D_x)^n (D_t)^k Gf(x,t) evaluated at x=t=0 with Gf(x,t) = exp[ t * x/(1-x) ] / (1-x)^2.
[O.g.f. for T ] = 1 / { [ 1 - t * x/(1-x) ] * (1-x)^2 }. [ O.g.f. for row sums ] = 1 / { (1-x) * (1-2x) }, giving A000225 (without a leading zero) for the row sums. Alternating sign row sums are all 1. [Sign correction noted by Vincent J. Matsko, Jul 19 2015]
O.g.f. for row polynomials = [ (1+q)**(n+1) - 1 ] / [ (1+q) -1 ] = A(1,n+1,q) on page 15 of reference on Grassmann cells in A008292. (End)
Given matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = C where C(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. The e.g.f. for the row polynomials of A is {(a+t) exp[(a+t)x] - a exp(a x)}/t, umbrally. - Tom Copeland, Aug 21 2008
A007318*A097806 as infinite lower triangular matrices. - Philippe Deléham, Feb 08 2009
Riordan array (1/(1-x)^2, x/(1-x)). - Philippe Deléham, Feb 22 2012
The elements of the matrix inverse are T^(-1)(n,k)=(-1)^(n+k)*T(n,k). - R. J. Mathar, Mar 12 2013
Relation to K-theory: T acting on the column vector (-0,d,-d^2,d^3,...) generates the Euler classes for a hypersurface of degree d in CP^n. Cf. Dugger p. 168 and also A104712, A111492, and A238363. - Tom Copeland, Apr 11 2014
Number of walks of length p>0 between any two distinct vertices of the complete graph K_(n+2) is W(n+2,p)=(-1)^(p-1)*Sum_{k=0..p-1} T(p-1,k)*(-n-2)^k = ((n+1)^p - (-1)^p)/(n+2) = (-1)^(p-1)*Sum_{k=0..p-1} (-n-1)^k. This is equal to (-1)^(p-1)*Phi(p,-n-1), where Phi is the cyclotomic polynomial when p is an odd prime. For K_3, see A001045; for K_4, A015518; for K_5, A015521; for K_6, A015531; for K_7, A015540. - Tom Copeland, Apr 14 2014
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x-1)^0 + A_1*(x-1)^1 + A_2*(x-1)^2 + ... + A_n*(x-1)^n. This sequence gives A_0, ..., A_n as the entries in the n-th row of this triangle, starting at n = 0. - Derek Orr, Oct 14 2014
See A074909 for associations among this array, the Bernoulli polynomials and their umbral compositional inverses, and the face polynomials of permutahedra and their duals (cf. A019538). - Tom Copeland, Nov 14 2014
From Wolfdieter Lang, Dec 10 2015: (Start)
A(r, n) = T(n+r-2, r-1) = risefac(n,r)/r! = binomial(n+r-1, r), for n >= 1 and r >= 1, gives the array with the number of independent components of a symmetric tensors of rank r (number of indices) and dimension n (indices run from 1 to n). Here risefac(n, k) is the rising factorial.
As(r, n) = T(n+1, r+1) = fallfac(n, r)/r! = binomial(n, r), r >= 1 and n >= 1 (with the triangle entries T(n, k) = 0 for n < k) gives the array with the number of independent components of an antisymmetric tensor of rank r and dimension n. Here fallfac is the falling factorial. (End)
The h-vectors associated to these f-vectors are given by A000012 regarded as a lower triangular matrix. Read as bivariate polynomials, the h-polynomials are the complete homogeneous symmetric polynomials in two variables, found in the compositional inverse of an e.g.f. for A008292, the h-vectors of the permutahedra. - Tom Copeland, Jan 10 2017
For a correlation between the states of a quantum system and the combinatorics of the n-simplex, see Boya and Dixit. - Tom Copeland, Jul 24 2017
LINKS
Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
L. Boya and K. Dixit, Geometry of density states, arXiv:808.1930 [quant-phy], 2017.
V. Buchstaber, Lectures on Toric Topology, Trends in Mathematics - New Series, Information Center for Mathematical Sciences, Vol. 10, No. 1, 2008. p. 7.
D. Dugger, A Geometric Introduction to K-Theory [From Tom Copeland, Apr 11 2014]
Atli Fannar Franklín, Pattern avoidance enumerated by inversions, arXiv:2410.07467 [math.CO], 2024. See pp. 2, 12.
Atli Fannar Franklín, Anders Claesson, Christian Bean, Henning Úlfarsson, and Jay Pantone, Restricted Permutations Enumerated by Inversions, arXiv:2406.16403 [cs.DM], 2024. See p. 4.
B. Grünbaum and G. C. Shephard, Convex polytopes, Bull. London Math. Soc. (1969) 1 (3): 257-300.
G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4 (Added by Tom Copeland, Oct 01 2015).
Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Wikipedia, Simplex
FORMULA
T(n, k) = Sum_{j=k..n} binomial(j,k) = binomial(n+1, k+1), n >= k >= 0, else 0. (Partial sum of column k of A007318 (Pascal), or summation on the upper binomial index (Graham et al. (GKP), eq. (5.10). For the GKP reference see A007318.) - Wolfdieter Lang, Aug 22 2012
E.g.f.: 1/x*((1 + x)*exp(t*(1 + x)) - exp(t)) = 1 + (2 + x)*t + (3 + 3*x + x^2)*t^2/2! + .... The infinitesimal generator for this triangle has the sequence [2,3,4,...] on the main subdiagonal and 0's elsewhere. - Peter Bala, Jul 16 2013
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 27 2013
T(n,k) = A193862(n,k)/2^k. - Philippe Deléham, Jan 29 2014
G.f.: 1/((1-x)*(1-x-x*y)). - Philippe Deléham, Mar 13 2014
From Tom Copeland, Mar 26 2014: (Start)
[From Copeland's 2007 and 2008 comments]
A) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^2 } (same as Deleham's).
B) The infinitesimal generator for T is given in A132681 with m=1 (same as Bala's), which makes connections to the ubiquitous associated Laguerre polynomials of integer orders, for this case the Laguerre polynomials of order one L(n,-t,1).
C) O.g.f. of row e.g.f.s: Sum_{n>=0} L(n,-t,1) x^n = exp[t*x/(1-x)]/(1-x)^2 = 1 + (2+t)x + (3+3*t+t^2/2!)x^2 + (4+6*t+4*t^2/2!+t^3/3!)x^3+ ... .
D) E.g.f. of row o.g.f.s: ((1+t)*exp((1+t)*x)-exp(x))/t (same as Bala's).
E) E.g.f. for T(n,k)*a(n-k): {(a+t) exp[(a+t)x] - a exp(a x)}/t, umbrally. For example, for a(k)=2^k, the e.g.f. for the row o.g.f.s is {(2+t) exp[(2+t)x] - 2 exp(2x)}/t.
(End)
From Tom Copeland, Apr 28 2014: (Start)
With different indexing
A) O.g.f. by row: [(1+t)^n-1]/t.
B) O.g.f. of row o.g.f.s: {1/[1-(1+t)*x] - 1/(1-x)}/t.
C) E.g.f. of row o.g.f.s: {exp[(1+t)*x]-exp(x)}/t.
These generating functions are related to row e.g.f.s of A111492. (End)
From Tom Copeland, Sep 17 2014: (Start)
A) U(x,s,t)= x^2/[(1-t*x)(1-(s+t)x)] = Sum_{n >= 0} F(n,s,t)x^(n+2) is a generating function for bivariate row polynomials of T, e.g., F(2,s,t)= s^2 + 3s*t + 3t^2 (Buchstaber, 2008).
B) dU/dt=x^2 dU/dx with U(x,s,0)= x^2/(1-s*x) (Buchstaber, 2008).
C) U(x,s,t) = exp(t*x^2*d/dx)U(x,s,0) = U(x/(1-t*x),s,0).
D) U(x,s,t) = Sum[n >= 0, (t*x)^n L(n,-:xD:,-1)] U(x,s,0), where (:xD:)^k=x^k*(d/dx)^k and L(n,x,-1) are the Laguerre polynomials of order -1, related to normalized Lah numbers. (End)
E.g.f. satisfies the differential equation d/dt(e.g.f.(x,t)) = (x+1)*e.g.f.(x,t) + exp(t). - Vincent J. Matsko, Jul 18 2015
The e.g.f. of the Norlund generalized Bernoulli (Appell) polynomials of order m, NB(n,x;m), is given by exponentiation of the e.g.f. of the Bernoulli numbers, i.e., multiple binomial self-convolutions of the Bernoulli numbers, through the e.g.f. exp[NB(.,x;m)t] = (t/(e^t - 1))^(m+1) * e^(xt). Norlund gave the relation to the factorials (x-1)!/(x-1-n)! = (x-1) ... (x-n) = NB(n,x;n), so T(n,m) = NB(m+1,n+2;m+1)/(m+1)!. - Tom Copeland, Oct 01 2015
From Wolfdieter Lang, Nov 08 2018: (Start)
Recurrences from the A- and Z- sequences for the Riordan triangle (see the W. Lang link under A006232 with references), which are A(n) = A019590(n+1), [1, 1, repeat (0)] and Z(n) = (-1)^(n+1)*A054977(n), [2, repeat(-1, 1)]:
T(0, 0) = 1, T(n, k) = 0 for n < k, and T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1, and T(n, k) = T(n-1, k-1) + T(n-1, k), for n >= m >= 1.
Boas-Buck recurrence for columns (see the Aug 10 2017 remark in A036521 also for references):
T(n, k) = ((2 + k)/(n - k))*Sum_{j=k..n-1} T(j, k), for n >= 1, k = 0, 1, ..., n-1, and input T(n, n) = 1, for n >= 0, (the BB-sequences are alpha(n) = 2 and beta(n) = 1). (End)
T(n, k) = [x^k] Sum_{j=0..n} (x+1)^j. - Peter Luschny, Jul 09 2019
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 ...
0: 1
1: 2 1
2: 3 3 1
3: 4 6 4 1
4: 5 10 10 5 1
5: 6 15 20 15 6 1
6: 7 21 35 35 21 7 1
7: 8 28 56 70 56 28 8 1
8: 9 36 84 126 126 84 36 9 1
9: 10 45 120 210 252 210 120 45 10 1
10: 11 55 165 330 462 462 330 165 55 11 1
11: 12 66 220 495 792 924 792 495 220 66 12 1
... reformatted by Wolfdieter Lang, Mar 23 2015
Production matrix begins
2 1
-1 1 1
1 0 1 1
-1 0 0 1 1
1 0 0 0 1 1
-1 0 0 0 0 1 1
1 0 0 0 0 0 1 1
-1 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1 1
- Philippe Deléham, Jan 29 2014
From Wolfdieter Lang, Nov 08 2018: (Start)
Recurrence [Philippe Deléham]: T(7, 3) = 2*35 + 35 - 15 - 20 = 70.
Recurrence from Riordan A- and Z-sequences: [1,1,repeat(0)] and [2, repeat(-1, +1)]: From Z: T(5, 0) = 2*5 - 10 + 10 - 5 + 1 = 6. From A: T(7, 3) = 35 + 35 = 70.
Boas-Buck column k=3 recurrence: T(7, 3) = (5/4)*(1 + 5 + 15 + 35) = 70. (End)
MAPLE
for i from 0 to 12 do seq(binomial(i, j)*1^(i-j), j = 1 .. i) od;
MATHEMATICA
Flatten[Table[CoefficientList[D[1/x ((x + 1) Exp[(x + 1) z] - Exp[z]), {z, k}] /. z -> 0, x], {k, 0, 11}]]
CoefficientList[CoefficientList[Series[1/((1 - x)*(1 - x - x*y)), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Nov 22 2017 *)
PROG
(PARI) for(n=0, 20, for(k=0, n, print1(1/k!*sum(i=0, n, (prod(j=0, k-1, i-j))), ", "))) \\ Derek Orr, Oct 14 2014
(Sage)
Trow = lambda n: sum((x+1)^j for j in (0..n)).list()
for n in (0..10): print(Trow(n)) # Peter Luschny, Jul 09 2019
KEYWORD
easy,nonn,tabl
AUTHOR
Zerinvary Lajos, Dec 02 2007
EXTENSIONS
Edited by Tom Copeland and N. J. A. Sloane, Dec 11 2007
STATUS
approved
Triangle read by rows: T(n, k) = binomial(n+k-1, 2*k-1).
+10
43
1, 2, 1, 3, 4, 1, 4, 10, 6, 1, 5, 20, 21, 8, 1, 6, 35, 56, 36, 10, 1, 7, 56, 126, 120, 55, 12, 1, 8, 84, 252, 330, 220, 78, 14, 1, 9, 120, 462, 792, 715, 364, 105, 16, 1, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1, 11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1
OFFSET
0,2
COMMENTS
Warning: formulas and programs sometimes refer to offset 0 and sometimes to offset 1.
Apart from signs, identical to A053122.
Coefficient array for Morgan-Voyce polynomial B(n,x); see A085478 for references. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of compositions of n having k parts when there are q kinds of part q (q=1,2,...). Example: T(4,2) = 10 because we have (1,3),(1,3'),(1,3"), (3,1),(3',1),(3",1),(2,2),(2,2'),(2',2) and (2',2'). - Emeric Deutsch, Apr 09 2005
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
This sequence is jointly generated with A085478 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Concerning Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
From Wolfdieter Lang, Aug 30 2012: (Start)
With offset [0,0] the triangle with entries R(n,k) = T(n+1,k+1):= binomial(n+k+1, 2*k+1), n >= k >= 0, and zero otherwise, becomes the Riordan lower triangular convolution matrix R = (G(x)/x, G(x)) with G(x):=x/(1-x)^2 (o.g.f. of A000027). This means that the o.g.f. of column number k of R is (G(x)^(k+1))/x. This matrix R is the inverse of the signed Riordan lower triangular matrix A039598, called in a comment there S.
The Riordan matrix with entries R(n,k), just defined, provides the transition matrix between the sequence entry F(4*m*(n+1))/L(2*l), with m >= 0, for n=0,1,... and the sequence entries 5^k*F(2*m)^(2*k+1) for k = 0,1,...,n, with F=A000045 (Fibonacci) and L=A000032 (Lucas). Proof: from the inverse of the signed triangle Riordan matrix S used in a comment on A039598.
For the transition matrix R (T with offset [0,0]) defined above, row n=2: F(12*m) /L(2*m) = 3*5^0*F(2*m)^1 + 4*5^1*F(2*m)^3 + 1*5^2*F(2*m)^5, m >= 0. (End)
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length ternary words containing k-1 letters equal 2 and avoiding 01. - Milan Janjic, Dec 20 2016
The infinite sum (Sum_{i >= 0} (T(s+i,1+i) / 2^(s+2*i)) * zeta(s+1+2*i)) = 1 allows any zeta(s+1) to be expressed as a sum of rational multiples of zeta(s+1+2*i) having higher arguments. For example, zeta(3) can be expressed as a sum involving zeta(5), zeta(7), etc. The summation for each s >= 1 uses the s-th diagonal of the triangle. - Robert B Fowler, Feb 23 2022
The convolution triangle of the nonnegative integers. - Peter Luschny, Oct 07 2022
LINKS
J. P. Allouche and M. Mendes France, Stern-Brocot polynomials and power series, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - From N. J. A. Sloane, May 10 2012
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
Nour-Eddine Fahssi, On the combinatorics of exclusion in Haldane fractional statistics, arXiv:1808.00045 [cond-mat.stat-mech], 2018.
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
A. Laradji, and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
Yidong Sun, Numerical triangles and several classical sequences, Fib. Quart. 43, no. 4, (2005) 359-370.
FORMULA
G.f.: x*y / (1 - (2 + y)*x + x^2). To get row n, expand this in powers of x then expand the coefficient of x^n in increasing powers of y.
From Philippe Deléham, Feb 16 2004: (Start)
If indexing begins at 0 we have
T(n,k) = (n+k+1)!/((n-k)!*(2k+1))!.
T(n,k) = Sum_{j>=0} T(n-1-j, k-1)*(j+1) with T(n, 0) = n+1, T(n, k) = 0 if n < k.
T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j) with T(n,k) = 0 if k < 0, T(0, 0)=1 and T(0, k) = 0 for k > 0.
G.f. for the column k: Sum_{n>=0} T(n, k)*x^n = (x^k)/(1-x)^(2k+2).
Row sums: Sum_{k>=0} T(n, k) = A001906(n+1). (End)
Antidiagonal sums are A000079(n) = Sum_{k=0..floor(n/2)} binomial(n+k+1, n-k). - Paul Barry, Jun 21 2004
Riordan array (1/(1-x)^2, x/(1-x)^2). - Paul Barry, Oct 22 2006
T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + 2*T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
For another version see A128908. - Philippe Deléham, Mar 27 2012
T(n,m) = Sum_{k=0..n-m} (binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)* binomial(n+1,m+k+1)). - Vladimir Kruchinin, Apr 13 2016
EXAMPLE
Triangle begins, 1 <= k <= n:
1
2 1
3 4 1
4 10 6 1
5 20 21 8 1
6 35 56 36 10 1
7 56 126 120 55 12 1
8 84 252 330 220 78 14 1
MAPLE
for n from 1 to 11 do seq(binomial(n+k-1, 2*k-1), k=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Apr 09 2005
# Uses function PMatrix from A357368. Adds a row and column above and to the left.
PMatrix(10, n -> n); # Peter Luschny, Oct 07 2022
MATHEMATICA
(* First program *)
u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A085478 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A078812 *) (* Clark Kimberling, Feb 25 2012 *)
(* Second program *)
Table[Binomial[n+k+1, 2*k+1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
PROG
(PARI) {T(n, k) = if( n<0, 0, binomial(n+k-1, 2*k-1))};
(PARI) {T(n, k) = polcoeff( polcoeff( x*y / (1 - (2 + y) * x + x^2) + x * O(x^n), n), k)};
(Haskell)
a078812 n k = a078812_tabl !! n !! k
a078812_row n = a078812_tabl !! n
a078812_tabl = [1] : [2, 1] : f [1] [2, 1] where
f us vs = ws : f vs ws where
ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
(us ++ [0, 0])
-- Reinhard Zumkeller, Dec 16 2013
(Sage)
@cached_function
def T(k, n):
if k==n: return 1
if k==0: return 0
return sum(i*T(k-1, n-i) for i in (1..n-k+1))
A078812 = lambda n, k: T(k, n)
[[A078812(n, k) for k in (1..n)] for n in (1..8)] # Peter Luschny, Mar 12 2016
(Sage) [[binomial(n+k+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
(Maxima)
T(n, m):=sum(binomial(2*k, n-m)*binomial(m+k, k)*(-1)^(n-m+k)*binomial(n+1, m+k+1), k, 0, n-m); /* Vladimir Kruchinin, Apr 13 2016 */
(Magma) /* As triangle */ [[Binomial(n+k-1, 2*k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 01 2018
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
CROSSREFS
This triangle is formed from odd-numbered rows of triangle A011973 read in reverse order.
Row sums give A001906. With signs: A053122.
The column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for k=1..6, resp. For k=7..24 they are A010966..(+2)..A011000 and for k=25..50 they are A017713..(+2)..A017763.
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Michael Somos, Dec 05 2002
EXTENSIONS
Edited by N. J. A. Sloane, Apr 28 2008
STATUS
approved
Triangle of coefficients of Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in increasing order).
+10
37
1, -2, 1, 3, -4, 1, -4, 10, -6, 1, 5, -20, 21, -8, 1, -6, 35, -56, 36, -10, 1, 7, -56, 126, -120, 55, -12, 1, -8, 84, -252, 330, -220, 78, -14, 1, 9, -120, 462, -792, 715, -364, 105, -16, 1, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
OFFSET
0,2
COMMENTS
Apart from signs, identical to A078812.
Another version with row-leading 0's and differing signs is given by A285072.
G.f. for row polynomials S(n,x-2) (signed triangle): 1/(1+(2-x)*z+z^2). Unsigned triangle |a(n,m)| has g.f. 1/(1-(2+x)*z+z^2) for row polynomials.
Row sums (signed triangle) A049347(n) (periodic(1,-1,0)). Row sums (unsigned triangle) A001906(n+1)=F(2*(n+1)) (even-indexed Fibonacci).
In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The (unsigned) column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for m=0..5, resp. For m=6..23 they are A010966..(+2)..A011000 and for m=24..49 they are A017713..(+2)..A017763.
Riordan array (1/(1+x)^2,x/(1+x)^2). Inverse array is A039598. Diagonal sums have g.f. 1/(1+x^2). - Paul Barry, Mar 17 2005. Corrected by _Wolfdieter_ Lang, Nov 13 2012.
Unsigned version is in A078812. - Philippe Deléham, Nov 05 2006
Also row n gives (except for an overall sign) coefficients of characteristic polynomial of the Cartan matrix for the root system A_n. - Roger L. Bagula, May 23 2007
From Wolfdieter Lang, Nov 13 2012: (Start)
The A-sequence for this Riordan triangle is A115141, and the Z-sequence is A115141(n+1), n>=0. For A- and Z-sequences for Riordan matrices see the W. Lang link under A006232 with details and references.
S(n,x^2-2) = sum(r(j,x^2),j=0..n) with Chebyshev's S-polynomials and r(j,x^2) := R(2*j+1,x)/x, where R(n,x) are the monic integer Chebyshv T-polynomials with coefficients given in A127672. Proof from comparing the o.g.f. of the partial sum of the r(j,x^2) polynomials (see a comment on the signed Riordan triangle A111125) with the present Riordan type o.g.f. for the row polynomials with x -> x^2. (End)
S(n,x^2-2) = S(2*n+1,x)/x, n >= 0, from the odd part of the bisection of the o.g.f. - Wolfdieter Lang, Dec 17 2012
For a relation to a generator for the Narayana numbers A001263, see A119900, whose columns are unsigned shifted rows (or antidiagonals) of this array, referring to the tables in the example sections. - Tom Copeland, Oct 29 2014
The unsigned rows of this array are alternating rows of a mirrored A011973 and alternating shifted rows of A030528 for the Fibonacci polynomials. - Tom Copeland, Nov 04 2014
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): a(n, m) = (2*(m + 1)/(n - m))*Sum_{k = m..n-1} (-1)^(n-k)*a(k, m), with input a(n, n) = 1, and a(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020
Row n gives the characteristic polynomial of the (n X n)-matrix M where M[i,j] = 2 if i = j, -1 if |i-j| = 1 and 0 otherwise. The matrix M is positive definite and has 2-condition number (cot(Pi/(2*n+2)))^2. - Jianing Song, Jun 21 2022
Also the convolution triangle of (-1)^(n+1)*n. - Peter Luschny, Oct 07 2022
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62.
Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S.: ISBN 0-8218-2848-7, 1978, p. 463.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Naiomi T. Cameron and Asamoah Nkwanta, On some (pseudo) involutions in the Riordan group, J. of Integer Sequences, 8(2005), 1-16.
P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014 (p. 10). - Tom Copeland, Oct 11 2014
Pentti Haukkanen, Jorma Merikoski, Seppo Mustonen, Some polynomials associated with regular polygons, Acta Univ. Sapientiae, Mathematica, 6, 2 (2014) 178-193.
Eric Weisstein's World of Mathematics, Cartan Matrix
Eric Weisstein's World of Mathematics, Dynkin Diagram
FORMULA
a(n, m) := 0 if n<m else ((-1)^(n-m))*binomial(n+m+1, 2*m+1);
a(n, m) = -2*a(n-1, m) + a(n-1, m-1) - a(n-2, m), a(n, -1) := 0 =: a(-1, m), a(0, 0)=1, a(n, m) := 0 if n<m;
O.g.f. for m-th column (signed triangle): ((x/(1+x)^2)^m)/(1+x)^2.
From Jianing Song, Jun 21 2022: (Start)
T(n,k) = [x^k]f_n(x), where f_{-1}(x) = 0, f_0(x) = 1, f_n(x) = (x-2)*f_{n-1}(x) - f_{n-2}(x) for n >= 2.
f_n(x) = (((x-2+sqrt(x^2-4*x))/2)^(n+1) - ((x-2-sqrt(x^2-4*x))/2)^(n+1))/sqrt(x^2-4x).
The roots of f_n(x) are 2 + 2*cos(k*Pi/(n+1)) = 4*(cos(k*Pi/(2*n+2)))^2 for 1 <= k <= n. (End)
EXAMPLE
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: -2 1
2: 3 -4 1
3: -4 10 -6 1
4: 5 -20 21 -8 1
5: -6 35 -56 36 -10 1
6: 7 -56 126 -120 55 -12 1
7: -8 84 -252 330 -220 78 -14 1
8: 9 -120 462 -792 715 -364 105 -16 1
9: -10 165 -792 1716 -2002 1365 -560 136 -18 1
... Reformatted and extended by Wolfdieter Lang, Nov 13 2012
E.g., fourth row (n=3) {-4,10,-6,1} corresponds to the polynomial S(3,x-2) = -4+10*x-6*x^2+x^3.
From Wolfdieter Lang, Nov 13 2012: (Start)
Recurrence: a(5,1) = 35 = 1*5 + (-2)*(-20) -1*(10).
Recurrence from Z-sequence [-2,-1,-2,-5,...]: a(5,0) = -6 = (-2)*5 + (-1)*(-20) + (-2)*21 + (-5)*(-8) + (-14)*1.
Recurrence from A-sequence [1,-2,-1,-2,-5,...]: a(5,1) = 35 = 1*5 + (-2)*(-20) + (-1)*21 + (-2)*(-8) + (-5)*1.
(End)
E.g., the fourth row (n=3) {-4,10,-6,1} corresponds also to the polynomial S(7,x)/x = -4 + 10*x^2 - 6*x^4 + x^6. - Wolfdieter Lang, Dec 17 2012
Boas-Buck type recurrence: -56 = a(5, 2) = 2*(-1*1 + 1*(-6) - 1*21) = -2*28 = -56. - Wolfdieter Lang, Jun 03 2020
MAPLE
seq(seq((-1)^(n+m)*binomial(n+m+1, 2*m+1), m=0..n), n=0..10); # Robert Israel, Oct 15 2014
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> -(-1)^n*n); # Peter Luschny, Oct 07 2022
MATHEMATICA
T[n_, m_, d_] := If[ n == m, 2, If[n == m - 1 || n == m + 1, -1, 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] (* Roger L. Bagula, May 23 2007 *)
(* Alternative code for the matrices from MathWorld: *)
sln[n_] := 2IdentityMatrix[n] - PadLeft[PadRight[IdentityMatrix[n - 1], {n, n - 1}], {n, n}] - PadLeft[PadRight[IdentityMatrix[n - 1], {n - 1, n}], {n, n}] (* Roger L. Bagula, May 23 2007 *)
PROG
(Sage)
@CachedFunction
def A053122(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
return A053122(n-1, k-1)-A053122(n-2, k)-2*A053122(n-1, k)
for n in (0..9): [A053122(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
CROSSREFS
Cf. A285072 (version with row-leading 0's and differing signs). - Eric W. Weisstein, Apr 09 2017
KEYWORD
easy,nice,sign,tabl
STATUS
approved
Riordan array (1, x/(1-x)^2).
+10
10
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 4, 10, 6, 1, 0, 5, 20, 21, 8, 1, 0, 6, 35, 56, 36, 10, 1, 0, 7, 56, 126, 120, 55, 12, 1, 0, 8, 84, 252, 330, 220, 78, 14, 1, 0, 9, 120, 462, 792, 715, 364, 105, 16, 1, 0, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1
OFFSET
0,5
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows given by [0,2,-1/2,1/2,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Row sums give A088305. - Philippe Deléham, Nov 21 2007
Column k is C(n,2k-1) for k > 0. - Philippe Deléham, Jan 20 2012
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
T is the convolution triangle of the positive integers (see A357368). - Peter Luschny, Oct 19 2022
FORMULA
T(n,0) = 0^n, T(n,k) = binomial(n+k-1, 2k-1) for k >= 1.
Sum_{k=0..n} T(n,k)*2^(n-k) = A002450(n) = (4^n-1)/3 for n>=1. - Philippe Deléham, Oct 19 2008
G.f.: (1-x)^2/(1-(2+y)*x+x^2). - Philippe Deléham, Jan 20 2012
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A001352(n), (-1)^(n+1)*A054888(n+1), (-1)^n*A008574(n), (-1)^n*A084103(n), (-1)^n*A084099(n), A163810(n), A000007(n), A088305(n) for x = -6, -5, -4, -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Jan 20 2012
Riordan array (1, x/(1-x)^2). - Philippe Deléham, Jan 20 2012
EXAMPLE
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 0 1
2: 0 2 1
3: 0 3 4 1
4: 0 4 10 6 1
5: 0 5 20 21 8 1
6: 0 6 35 56 36 10 1
7: 0 7 56 126 120 55 12 1
8: 0 8 84 252 330 220 78 14 1
9: 0 9 120 462 792 715 364 105 16 1
10: 0 10 165 792 1716 2002 1365 560 136 18 1
... reformatted by Wolfdieter Lang, Jul 31 2017
From Peter Luschny, Mar 06 2022: (Start)
The sequence can also be seen as a square array read by upwards antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
0, 2, 4, 6, 8, 10, 12, 14, 16, ... A005843
0, 3, 10, 21, 36, 55, 78, 105, 136, ... A014105
0, 4, 20, 56, 120, 220, 364, 560, 816, ... A002492
0, 5, 35, 126, 330, 715, 1365, 2380, 3876, ... (A053126)
0, 6, 56, 252, 792, 2002, 4368, 8568, 15504, ... (A053127)
0, 7, 84, 462, 1716, 5005, 12376, 27132, 54264, ... (A053128)
0, 8, 120, 792, 3432, 11440, 31824, 77520, 170544, ... (A053129)
0, 9, 165, 1287, 6435, 24310, 75582, 203490, 490314, ... (A053130)
A27,A292, A389, A580, A582, A1288, A10966, A10968, A165817 (End)
MAPLE
# Computing the rows of the array representation:
S := proc(n, k) option remember;
if n = k then 1 elif k < 0 or k > n then 0 else
S(n-1, k-1) + 2*S(n-1, k) - S(n-2, k) fi end:
Arow := (n, len) -> seq(S(n+k-1, k-1), k = 0..len-1):
for n from 0 to 8 do Arow(n, 9) od; # Peter Luschny, Mar 06 2022
# Uses function PMatrix from A357368.
PMatrix(10, n -> n); # Peter Luschny, Oct 19 2022
MATHEMATICA
With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - x)^2/(1 - (2 + y)*x + x^2), {x, 0, nmax}, {y, 0, nmax}], x], y]] // Flatten (* G. C. Greubel, Nov 22 2017 *)
PROG
(Sage)
@cached_function
def T(k, n):
if k==n: return 1
if k==0: return 0
return sum(i*T(k-1, n-i) for i in (1..n-k+1))
A128908 = lambda n, k: T(k, n)
for n in (0..10): print([A128908(n, k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
(PARI) for(n=0, 10, for(k=0, n, print1(if(n==0 && k==0, 1, if(k==0, 0, binomial(n+k-1, 2*k-1))), ", "))) \\ G. C. Greubel, Nov 22 2017
(Python)
from functools import cache
@cache
def A128908(n, k):
if n == k: return 1
if (k <= 0 or k > n): return 0
return A128908(n-1, k-1) + 2*A128908(n-1, k) - A128908(n-2, k)
for n in range(10):
print([A128908(n, k) for k in range(n+1)]) # Peter Luschny, Mar 07 2022
CROSSREFS
Cf. A165817 (the main diagonal of the array).
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Apr 22 2007
STATUS
approved
Triangle T(n,k), read by rows, given by T(n,k) = C(n+1, k+1)*(1-(k mod 2)).
+10
8
1, 2, 0, 3, 0, 1, 4, 0, 4, 0, 5, 0, 10, 0, 1, 6, 0, 20, 0, 6, 0, 7, 0, 35, 0, 21, 0, 1, 8, 0, 56, 0, 56, 0, 8, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 12, 0, 220, 0, 792, 0, 792, 0, 220, 0, 12, 0
OFFSET
0,2
COMMENTS
Row sums are powers of 2.
FORMULA
G.f.: 1/((1+(y-1)*x)*(1-(y+1)*x)).
T(n,k) = 2*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k)*x^k = A000027(n+1), A000079(n), A015518(n+1), A003683(n+1), A079773(n+1), A051958(n+1), A080920(n+1), A053455(n), A160958(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.
EXAMPLE
Triangle begins:
1;
2, 0;
3, 0, 1;
4, 0, 4, 0;
5, 0, 10, 0, 1;
6, 0, 20, 0, 6, 0;
7, 0, 35, 0, 21, 0, 1;
8, 0, 56, 0, 56, 0, 8, 0;
9, 0, 84, 0, 126, 0, 36, 0, 1;
10, 0, 120, 0, 252, 0, 120, 0, 10, 0; etc.
MATHEMATICA
Table[Binomial[n + 1, k + 1]*(1 - Mod[k , 2]), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
PROG
(PARI) T(n, k) = binomial(n+1, k+1)*(1-(k % 2));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Nov 23 2017
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 05 2014
STATUS
approved
Binomial coefficients C(n,52).
+10
5
1, 53, 1431, 26235, 367290, 4187106, 40475358, 341149446, 2558620845, 17341763505, 107518933731, 615790256823, 3284214703056, 16421073515280, 77413632286320, 345780890878896, 1469568786235308, 5964720367660956
OFFSET
52,2
LINKS
FORMULA
From G. C. Greubel, Nov 03 2018: (Start)
G.f.: x^52/(1-x)^53.
E.g.f.: x^52*exp(x)/52!. (End)
From Amiram Eldar, Dec 16 2020: (Start)
Sum_{n>=52} 1/a(n) = 52/51.
Sum_{n>=52} (-1)^n/a(n) = A001787(52)*log(2) - A242091(52)/51! = 117093590311632896*log(2) - 120926939503504532846299231985163098 / 1489925242425959955 = 0.9817952764... (End)
MATHEMATICA
Table[Binomial[n, 52], {n, 52, 80}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
PROG
(Sage) [binomial(n, 52) for n in range(52, 70)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=52, 80, print1(binomial(n, 52), ", ")) \\ G. C. Greubel, Nov 03 2018
(Magma) [Binomial(n, 52): n in [52..80]]; // G. C. Greubel, Nov 03 2018
CROSSREFS
KEYWORD
nonn
STATUS
approved
Binomial coefficients C(n,53).
+10
4
1, 54, 1485, 27720, 395010, 4582116, 45057474, 386206920, 2944827765, 20286591270, 127805525001, 743595781824, 4027810484880, 20448884000160, 97862516286480, 443643407165376, 1913212193400684, 7877932561061640
OFFSET
53,2
LINKS
FORMULA
From G. C. Greubel, Nov 03 2018: (Start)
G.f.: x^53/(1-x)^54.
E.g.f.: x^53*exp(x)/53!. (End)
From Amiram Eldar, Dec 16 2020: (Start)
Sum_{n>=53} 1/a(n) = 53/52.
Sum_{n>=53} (-1)^(n+1)/a(n) = A001787(53)*log(2) - A242091(53)/52! = 238690780250636288*log(2) - 12818255587371480560673756439003166003 / 77476112606149917660 = 0.9821211403... (End)
MATHEMATICA
Table[Binomial[n, 53], {n, 53, 80}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
PROG
(Sage) [binomial(n, 53) for n in range(53, 71)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=53, 80, print1(binomial(n, 53), ", ")) \\ G. C. Greubel, Nov 03 2018
(Magma) [Binomial(n, 53): n in [53..80]]; // G. C. Greubel, Nov 03 2018
CROSSREFS
KEYWORD
nonn
STATUS
approved
a(n) = binomial coefficient C(n,100).
+10
4
1, 101, 5151, 176851, 4598126, 96560646, 1705904746, 26075972546, 352025629371, 4263421511271, 46897636623981, 473239787751081, 4416904685676756, 38393094575497956, 312629484400483356, 2396826047070372396, 17376988841260199871, 119594570260437846171
OFFSET
100,2
COMMENTS
More generally, the ordinary generating function for the binomial coefficients C(n,k) is x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Mar 21 2016
LINKS
FORMULA
G.f.: x^100/(1 - x)^101. - Ilya Gutkovskiy, Mar 21 2016
E.g.f.: x^100 * exp(x)/(100)!. - G. C. Greubel, Nov 24 2017
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=100} 1/a(n) = 100/99.
Sum_{n>=100} (-1)^n/a(n) = A001787(100)*log(2) - A242091(100)/99! = 63382530011411470074835160268800*log(2) - 1914409165727592211172313915606932788039791776845041612575266508424929 / 43575234518570298227833630584570189723 = 0.9902877001... (End)
MATHEMATICA
Table[Binomial[n, 100], {n, 100, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
PROG
(Sage) [binomial(n, 100) for n in range(100, 115)] # Zerinvary Lajos, May 23 2009
(PARI) a(n)=binomial(n, 100) \\ Charles R Greathouse IV, Jun 28 2012
(Python)
A017764_list, m = [], [1]*101
for _ in range(10**2):
A017764_list.append(m[-1])
for i in range(100):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
(Magma) [Binomial(n, 100): n in [100..130]]; // G. C. Greubel, Nov 24 2017
CROSSREFS
Cf. similar sequences of the binomial coefficients C(n,k): A000012 (k = 0), A001477 (k = 1), A000217 (k = 2), A000292 (k = 3), A000332 (k = 4), A000389 (k = 5), A000579-A000582 (k = 6..9) A001287 (k = 10), A001288 (k = 11), A010965-A011001 (k = 12..48), A017713-A017763 (k = 49..99), this sequence (k = 100).
KEYWORD
nonn,easy
STATUS
approved
Triangle read by rows giving coefficients of the trigonometric expansion of sin(n*x).
+10
4
1, 2, 0, 3, 0, -1, 4, 0, -4, 0, 5, 0, -10, 0, 1, 6, 0, -20, 0, 6, 0, 7, 0, -35, 0, 21, 0, -1, 8, 0, -56, 0, 56, 0, -8, 0, 9, 0, -84, 0, 126, 0, -36, 0, 1, 10, 0, -120, 0, 252, 0, -120, 0, 10, 0, 11, 0, -165, 0, 462, 0, -330, 0, 55, 0, -1, 12, 0, -220, 0, 792, 0, -792, 0, 220, 0, -12, 0, 13, 0, -286, 0, 1287, 0
OFFSET
1,2
LINKS
Clark Kimberling, Polynomials associated with reciprocation, JIS 12 (2009) 09.3.4, section 5.
FORMULA
T(n,k) = C(n+1,k+1)*sin(Pi*(k+1)/2). - Paul Barry, May 21 2006
EXAMPLE
The trigonometric expansion of sin(4x) is 4*cos(x)^3*sin(x) - 4*cos(x)*sin(x)^3, so the fourth row is 4, 0, -4, 0.
Triangle begins:
1
2 0
3 0 -1
4 0 -4 0
5 0 -10 0 1
6 0 -20 0 6 0
7 0 -35 0 21 0 -1
8 0 -56 0 56 0 -8 0
MATHEMATICA
Flatten[ Table[ Plus @@ CoefficientList[ TrigExpand[ Sin[n*x]], {Sin[x], Cos[x]}], {n, 13}]]
CROSSREFS
First column is A000027 = C(n, 1), third column is A000292 = C(n, 3), fifth column is A000389 = C(n, 5), seventh column is A000580 = C(n, 7), ninth column is A000582 = C(n, 9).
A001288 = C(n, 11), A010966 = C(n, 13), A010968 = C(n, 15), A010970 = C(n, 17), A010972 = C(n, 19),
A010974 = C(n, 21), A010976 = C(n, 23), A010978 = C(n, 25), A010980 = C(n, 27), A010982 = C(n, 29),
A010984 = C(n, 31), A010986 = C(n, 33), A010988 = C(n, 35), A010990 = C(n, 37), A010992 = C(n, 39),
A010994 = C(n, 41), A010996 = C(n, 43), A010998 = C(n, 45), A011000 = C(n, 47), A017713 = C(n, 49)
Another version of the triangle in A034867. Cf. A096754.
A017715 = C(n, 51), A017717 = C(n, 53), A017719 = C(n, 55), A017721 = C(n, 57), etc.
KEYWORD
sign,tabl
AUTHOR
Robert G. Wilson v, Jul 06 2004
STATUS
approved

Search completed in 0.014 seconds