[go: up one dir, main page]

login
Search: a128908 -id:a128908
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (4^n - 1)/3.
(Formerly M3914 N1608)
+10
292
0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, 349525, 1398101, 5592405, 22369621, 89478485, 357913941, 1431655765, 5726623061, 22906492245, 91625968981, 366503875925, 1466015503701, 5864062014805, 23456248059221, 93824992236885, 375299968947541
OFFSET
0,3
COMMENTS
For n > 0, a(n) is the degree (n-1) "numbral" power of 5 (see A048888 for the definition of numbral arithmetic). Example: a(3) = 21, since the numbral square of 5 is 5(*)5 = 101(*)101(base 2) = 101 OR 10100 = 10101(base 2) = 21, where the OR is taken bitwise. - John W. Layman, Dec 18 2001
a(n) is composite for all n > 2 and has factors x, (3*x + 2*(-1)^n) where x belongs to A001045. In binary the terms greater than 0 are 1, 101, 10101, 1010101, etc. - John McNamara, Jan 16 2002
Number of n X 2 binary arrays with path of adjacent 1's from upper left corner to right column. - R. H. Hardin, Mar 16 2002
The Collatz-function iteration started at a(n), for n >= 1, will end at 1 after 2*n+1 steps. - Labos Elemer, Sep 30 2002 [corrected by Wolfdieter Lang, Aug 16 2021]
Second binomial transform of A001045. - Paul Barry, Mar 28 2003
All members of sequence are also generalized octagonal numbers (A001082). - Matthew Vandermast, Apr 10 2003
Also sum of squares of divisors of 2^(n-1): a(n) = A001157(A000079(n-1)), for n > 0. - Paul Barry, Apr 11 2003
Binomial transform of A000244 (with leading zero). - Paul Barry, Apr 11 2003
Number of walks of length 2n between two vertices at distance 2 in the cycle graph C_6. For n = 2 we have for example 5 walks of length 4 from vertex A to C: ABABC, ABCBC, ABCDC, AFABC and AFEDC. - Herbert Kociemba, May 31 2004
Also number of walks of length 2n + 1 between two vertices at distance 3 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004
a(n+1) is the number of steps that are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to mark one vertex on the lattice (compare A080674). - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 13 2005
a(n+1) is the sum of square divisors of 4^n. - Paul Barry, Oct 13 2005
a(n+1) is the decimal number generated by the binary bits in the n-th generation of the Rule 250 elementary cellular automaton. - Eric W. Weisstein, Apr 08 2006
a(k) = [M^k]_2,1, where M is the 3 X 3 matrix defined as follows: M = [1, 1, 1; 1, 3, 1; 1, 1, 1]. - Simone Severini, Jun 11 2006
a(n-1) / a(n) = percentage of wasted storage if a single image is stored as a pyramid with a each subsequent higher resolution layer containing four times as many pixels as the previous layer. n is the number of layers. - Victor Brodsky (victorbrodsky(AT)gmail.com), Jun 15 2006
k is in the sequence if and only if C(4k + 1, k) (A052203) is odd. - Paul Barry, Mar 26 2007
This sequence also gives the number of distinct 3-colorings of the odd cycle C(2*n - 1). - Keith Briggs, Jun 19 2007
All numbers of the form m*4^m + (4^m-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity m*4^m + (4^m-1)/3 = 4(4(..4(4m + 1) + 1) + 1) + 1 ..) + 1. - Artur Jasinski, Nov 12 2007
For n > 0, terms are the numbers that, in base 4, are repunits: 1_4, 11_4, 111_4, 1111_4, etc. - Artur Jasinski, Sep 30 2008
Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 5, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = charpoly(A,1). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 3, 4; 2) = A(0, 1; 4, 0; 1) of the family of sequences [a, b : c, d : k] considered by G. Detlefs, and treated as A(a, b; c, d; k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
6*a(n) + 1 is every second Mersenne number greater than or equal to M3, hence all Mersenne primes greater than M2 must be a 6*a(n) + 1 of this sequence. - Roderick MacPhee, Nov 01 2010
Smallest number having alternating bit sum n. Cf. A065359.
For n = 1, 2, ..., the last digit of a(n) is 1, 5, 1, 5, ... . - Washington Bomfim, Jan 21 2011
Rule 50 elementary cellular automaton generates this sequence. This sequence also appears in the second column of array in A173588. - Paul Muljadi, Jan 27 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 21, ..., in the square spiral whose edges are the Jacobsthal numbers A001045 and whose vertices are the numbers A000975. These parallel lines are two semi-diagonals in the spiral. - Omar E. Pol, Sep 10 2011
a(n), n >= 1, is also the inverse of 3, denoted by 3^(-1), Modd(2^(2*n - 1)). For Modd n see a comment on A203571. E.g., a(2) = 5, 3 * 5 = 15 == 1 (Modd 8), because floor(15/8) = 1 is odd and -15 == 1 (mod 8). For n = 1 note that 3 * 1 = 3 == 1 (Modd 2) because floor(3/2) = 1 and -3 == 1 (mod 2). The inverse of 3 taken Modd 2^(2*n) coincides with 3^(-1) (mod 2^(2*n)) given in A007583(n), n >= 1. - Wolfdieter Lang, Mar 12 2012
If an AVL tree has a leaf at depth n, then the tree can contain no more than a(n+1) nodes total. - Mike Rosulek, Nov 20 2012
Also, this is the Lucas sequence V(5, 4). - Bruno Berselli, Jan 10 2013
Also, for n > 0, a(n) is an odd number whose Collatz trajectory contains no odd number other than n and 1. - Jayanta Basu, Mar 24 2013
Sum_{n >= 1} 1/a(n) converges to (3*(log(4/3) - QPolyGamma[0, 1, 1/4]))/log(4) = 1.263293058100271... = A321873. - K. G. Stier, Jun 23 2014
Consider n spheres in R^n: the i-th one (i=1, ..., n) has radius r(i) = 2^(1-i) and the coordinates of its center are (0, 0, ..., 0, r(i), 0, ..., 0) where r(i) is in position i. The coordinates of the intersection point in the positive orthant of these spheres are (2/a(n), 4/a(n), 8/a(n), 16/a(n), ...). For example in R^2, circles centered at (1, 0) and (0, 1/2), and with radii 1 and 1/2, meet at (2/5, 4/5). - Jean M. Morales, May 19 2015
From Peter Bala, Oct 11 2015: (Start)
a(n) gives the values of m such that binomial(4*m + 1,m) is odd. Cf. A003714, A048716, A263132.
2*a(n) = A020988(n) gives the values of m such that binomial(4*m + 2, m) is odd.
4*a(n) = A080674(n) gives the values of m such that binomial(4*m + 4, m) is odd. (End)
Collatz Conjecture Corollary: Except for powers of 2, the Collatz iteration of any positive integer must eventually reach a(n) and hence terminate at 1. - Gregory L. Simay, May 09 2016
Number of active (ON, black) cells at stage 2^n - 1 of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood. - Robert Price, May 16 2016
From Luca Mariot and Enrico Formenti, Sep 26 2016: (Start)
a(n) is also the number of coprime pairs of polynomials (f, g) over GF(2) where both f and g have degree n + 1 and nonzero constant term.
a(n) is also the number of pairs of one-dimensional binary cellular automata with linear and bipermutive local rule of neighborhood size n+1 giving rise to orthogonal Latin squares of order 2^m, where m is a multiple of n. (End)
Except for 0, 1 and 5, all terms are Brazilian repunits numbers in base 4, and so belong to A125134. For n >= 3, all these terms are composite because a(n) = {(2^n-1) * (2^n + 1)}/3 and either (2^n - 1) or (2^n + 1) is a multiple of 3. - Bernard Schott, Apr 29 2017
Given the 3 X 3 matrix A = [2, 1, 1; 1, 2, 1; 1, 1, 2] and the 3 X 3 unit matrix I_3, A^n = a(n)(A - I_3) + I_3. - Nicolas Patrois, Jul 05 2017
The binary expansion of a(n) (n >= 1) consists of n 1's alternating with n - 1 0's. Example: a(4) = 85 = 1010101_2. - Emeric Deutsch, Aug 30 2017
a(n) (n >= 1) is the viabin number of the integer partition [n, n - 1, n - 2, ..., 2, 1] (for the definition of viabin number see comment in A290253). Example: a(4) = 85 = 1010101_2; consequently, the southeast border of the Ferrers board of the corresponding integer partition is ENENENEN, where E = (1, 0), N = (0, 1); this leads to the integer partition [4, 3, 2, 1]. - Emeric Deutsch, Aug 30 2017
Numbers whose binary and Gray-code representations are both palindromes (i.e., intersection of A006995 and A281379). - Amiram Eldar, May 17 2021
Starting with n = 1 the sequence satisfies {a(n) mod 6} = repeat{1, 5, 3}. - Wolfdieter Lang, Jan 14 2022
Terms >= 5 are those q for which the multiplicative order of 2 mod q is floor(log_2(q)) + 2 (and which is 1 more than the smallest possible order for any q). - Tim Seuré, Mar 09 2024
The order of 2 modulo a(n) is 2*n for n >= 2. - Joerg Arndt, Mar 09 2024
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Sung-Hyuk Cha, On Complete and Size Balanced k-ary Tree Integer Sequences, International Journal of Applied Mathematics and Informatics, Issue 2, Volume 6, 2012, pp. 67-75. - From N. J. A. Sloane, Dec 24 2012
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 8.
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987
Ernesto Estrada and José A. de la Peña, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84.
Rigoberto Flórez, Robinson A. Higuita, and Antara Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
Enrico Formenti and Luca Mariot, Exhaustive Generation of Linear Orthogonal CA, Automata 2023, Univ. Twente (Netherlands), see p. 22 of 38.
A. Frosini and S. Rinaldi, On the Sequence A079500 and Its Combinatorial Interpretations, J. Integer Seq., Vol. 9 (2006), Article 06.3.1.
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
Petro Kosobutskyy and Nataliia Nestor, On the mathematical model of the transformation of natural numbers by a function of a split type, Comp. Des. Sys. Theor. Practice (2024) Vol. 6, No. 2. See p. 7.
Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, From Newton's binomial and Pascal's triangle to Collatz's problem, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, 121-127.
J. V. Leyendekkers and A.G. Shannon, Modular Rings and the Integer 3, Notes on Number Theory & Discrete Mathematics, 17 (2011), 47-51.
Luca Mariot, Orthogonal labelings in de Bruijn graphs, IWOCA 2020 - Open Problems Session, Delft University of Technology (Netherlands).
Luca Mariot, Connections between Latin squares, Cellular Automata and Coprime Polynomials, Univ. Twente (Netherlands, 2023). See p. 16/37.
Luca Mariot, Enrico Formenti and Alberto Leporati, Constructing Orthogonal Latin Squares from Linear Cellular Automata. In: Exploratory papers of AUTOMATA 2016.
Luca Mariot, Maximilien Gadouleau, Enrico Formenti, and Alberto Leporati, Mutually Orthogonal Latin Squares based on Cellular Automata, arXiv:1906.08249 [cs.DM], 2019.
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Kalika Prasad, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato, The sequence of higher order Mersenne numbers and associated binomial transforms, arXiv:2307.08073 [math.NT], 2023.
A. G. Shannon, Some recurrence relations for binary sequence matrices, NNTDM 17 (2011), 4, 913. - From N. J. A. Sloane, Jun 13 2012
T. N. Thiele, Interpolationsrechnung, Teubner, Leipzig, 1909, p. 35.
Eric Weisstein's World of Mathematics, Repunit, Rule 250, Prime Knot.
Michael Williams, Collatz conjecture: an order isomorphic recursive machine, ResearchGate (2024). See pp. 8, 13.
FORMULA
From Wolfdieter Lang, Apr 24 2001: (Start)
a(n+1) = Sum_{m = 0..n} A060921(n, m).
G.f.: x/((1-x)*(1-4*x)). (End)
a(n) = Sum_{k = 0..n-1} 4^k; a(n) = A001045(2*n). - Paul Barry, Mar 17 2003
E.g.f.: (exp(4*x) - exp(x))/3. - Paul Barry, Mar 28 2003
a(n) = (A007583(n) - 1)/2. - N. J. A. Sloane, May 16 2003
a(n) = A000975(2*n)/2. - N. J. A. Sloane, Sep 13 2003
a(n) = A084160(n)/2. - N. J. A. Sloane, Sep 13 2003
a(n+1) = 4*a(n) + 1, with a(0) = 0. - Philippe Deléham, Feb 25 2004
a(n) = Sum_{i = 0..n-1} C(2*n - 1 - i, i)*2^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*3^k. - Paul Barry, Aug 20 2004
a(n) = center term in M^n * [1 0 0], where M is the 3 X 3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 0 0] = [A007583(n-1) a(n) A007583(n-1)]. E.g., a(4) = 85 since M^4 * [1 0 0] = [43 85 43] = [A007583(3) a(4) A007583(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = Sum_{k = 0..n, j = 0..n} C(n, j)*C(j, k)*A001045(j - k). - Paul Barry, Feb 15 2005
a(n) = Sum_{k = 0..n} C(n, k)*A001045(n-k)*2^k = Sum_{k = 0..n} C(n, k)*A001045(k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A125118(n, 3) for n > 2. - Reinhard Zumkeller, Nov 21 2006
a(n) = Sum_{k = 0..n} 2^(n - k)*A128908(n, k), n >= 1. - Philippe Deléham, Oct 19 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A100335(k). - Philippe Deléham, Oct 30 2008
If we define f(m, j, x) = Sum_{k = j..m} binomial(m, k)*stirling2(k, j)*x^(m - k) then a(n-1) = f(2*n, 4, -2), n >= 2. - Milan Janjic, Apr 26 2009
a(n) = A014551(n) * A001045(n). - R. J. Mathar, Jul 08 2009
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) = 5*a(n-1) - 4*a(n-2), a(0) = 0, a(1) = 1, a(2) = 5. - Wolfdieter Lang, Oct 18 2010
a(0) = 0, a(n+1) = a(n) + 2^(2*n). - Washington Bomfim, Jan 21 2011
A036555(a(n)) = 2*n. - Reinhard Zumkeller, Jan 28 2011
a(n) = Sum_{k = 1..floor((n+2)/3)} C(2*n + 1, n + 2 - 3*k). - Mircea Merca, Jun 25 2011
a(n) = Sum_{i = 1..n} binomial(2*n + 1, 2*i)/3. - Wesley Ivan Hurt, Mar 14 2015
a(n+1) = 2^(2*n) + a(n), a(0) = 0. - Ben Paul Thurston, Dec 27 2015
a(k*n)/a(n) = 1 + 4^n + ... + 4^((k-1)*n). - Gregory L. Simay, Jun 09 2016
Dirichlet g.f.: (PolyLog(s, 4) - zeta(s))/3. - Ilya Gutkovskiy, Jun 26 2016
A000120(a(n)) = n. - André Dalwigk, Mar 26 2018
a(m) divides a(m*n), in particular: a(2*n) == 0 (mod 5), a(3*n) == 0 (mod 3*7), a(5*n) == 0 (mod 11*31), etc. - M. F. Hasler, Oct 19 2018
a(n) = 4^(n-1) + a(n-1). - Bob Selcoe, Jan 01 2020
a(n) = A178415(1, n) = A347834(1, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021
a(n) = A000225(2*n)/3. - John Keith, Jan 22 2022
a(n) = A080674(n) + 1 = A047849(n) - 1 = A163834(n) - 2 = A155701(n) - 3 = A163868(n) - 4 = A156605(n) - 7. - Ray Chandler, Jun 16 2023
EXAMPLE
Apply Collatz iteration to 9: 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1.
Apply Collatz iteration to 27: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1. [Corrected by Sean A. Irvine at the suggestion of Stephen Cornelius, Mar 04 2024]
a(5) = (4^5 - 1)/3 = 341 = 11111_4 = {(2^5 - 1) * (2^5 + 1)}/3 = 31 * 33/3 = 31 * 11. - Bernard Schott, Apr 29 2017
MAPLE
[seq((4^n-1)/3, n=0..40)];
A002450:=1/(4*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
MATHEMATICA
Table[(4^n - 1)/3, {n, 0, 127}] (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
LinearRecurrence[{5, -4}, {0, 1}, 30] (* Harvey P. Dale, Jun 23 2013 *)
PROG
(Magma) [ (4^n-1)/3: n in [0..25] ]; // Klaus Brockhaus, Oct 28 2008
(Magma) [n le 2 select n-1 else 5*Self(n-1)-4*Self(n-2): n in [1..70]]; // Vincenzo Librandi, Jun 13 2015
(PARI) a(n) = (4^n-1)/3;
(PARI) my(z='z+O('z^40)); Vec(z/((1-z)*(1-4*z))) \\ Altug Alkan, Oct 11 2015
(Haskell)
a002450 = (`div` 3) . a024036
a002450_list = iterate ((+ 1) . (* 4)) 0
-- Reinhard Zumkeller, Oct 03 2012
(Maxima) makelist((4^n-1)/3, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(GAP) List([0..25], n -> (4^n-1)/3); # Muniru A Asiru, Feb 18 2018
(Scala) ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _)).scanLeft(0: BigInt)(_ + _) // Alonso del Arte, Sep 17 2019
(Python)
def A002450(n): return ((1<<(n<<1))-1)//3 # Chai Wah Wu, Jan 29 2023
CROSSREFS
Partial sums of powers of 4, A000302.
When converted to binary, this gives A094028.
Subsequence of A003714.
Primitive factors: A129735.
KEYWORD
nonn,easy,nice,changed
STATUS
approved
Triangle read by rows: T(n, k) = binomial(n+k-1, 2*k-1).
+10
43
1, 2, 1, 3, 4, 1, 4, 10, 6, 1, 5, 20, 21, 8, 1, 6, 35, 56, 36, 10, 1, 7, 56, 126, 120, 55, 12, 1, 8, 84, 252, 330, 220, 78, 14, 1, 9, 120, 462, 792, 715, 364, 105, 16, 1, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1, 11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1
OFFSET
0,2
COMMENTS
Warning: formulas and programs sometimes refer to offset 0 and sometimes to offset 1.
Apart from signs, identical to A053122.
Coefficient array for Morgan-Voyce polynomial B(n,x); see A085478 for references. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of compositions of n having k parts when there are q kinds of part q (q=1,2,...). Example: T(4,2) = 10 because we have (1,3),(1,3'),(1,3"), (3,1),(3',1),(3",1),(2,2),(2,2'),(2',2) and (2',2'). - Emeric Deutsch, Apr 09 2005
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
This sequence is jointly generated with A085478 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Concerning Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
From Wolfdieter Lang, Aug 30 2012: (Start)
With offset [0,0] the triangle with entries R(n,k) = T(n+1,k+1):= binomial(n+k+1, 2*k+1), n >= k >= 0, and zero otherwise, becomes the Riordan lower triangular convolution matrix R = (G(x)/x, G(x)) with G(x):=x/(1-x)^2 (o.g.f. of A000027). This means that the o.g.f. of column number k of R is (G(x)^(k+1))/x. This matrix R is the inverse of the signed Riordan lower triangular matrix A039598, called in a comment there S.
The Riordan matrix with entries R(n,k), just defined, provides the transition matrix between the sequence entry F(4*m*(n+1))/L(2*l), with m >= 0, for n=0,1,... and the sequence entries 5^k*F(2*m)^(2*k+1) for k = 0,1,...,n, with F=A000045 (Fibonacci) and L=A000032 (Lucas). Proof: from the inverse of the signed triangle Riordan matrix S used in a comment on A039598.
For the transition matrix R (T with offset [0,0]) defined above, row n=2: F(12*m) /L(2*m) = 3*5^0*F(2*m)^1 + 4*5^1*F(2*m)^3 + 1*5^2*F(2*m)^5, m >= 0. (End)
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length ternary words containing k-1 letters equal 2 and avoiding 01. - Milan Janjic, Dec 20 2016
The infinite sum (Sum_{i >= 0} (T(s+i,1+i) / 2^(s+2*i)) * zeta(s+1+2*i)) = 1 allows any zeta(s+1) to be expressed as a sum of rational multiples of zeta(s+1+2*i) having higher arguments. For example, zeta(3) can be expressed as a sum involving zeta(5), zeta(7), etc. The summation for each s >= 1 uses the s-th diagonal of the triangle. - Robert B Fowler, Feb 23 2022
The convolution triangle of the nonnegative integers. - Peter Luschny, Oct 07 2022
LINKS
J. P. Allouche and M. Mendes France, Stern-Brocot polynomials and power series, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - From N. J. A. Sloane, May 10 2012
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
Nour-Eddine Fahssi, On the combinatorics of exclusion in Haldane fractional statistics, arXiv:1808.00045 [cond-mat.stat-mech], 2018.
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
A. Laradji, and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
Yidong Sun, Numerical triangles and several classical sequences, Fib. Quart. 43, no. 4, (2005) 359-370.
FORMULA
G.f.: x*y / (1 - (2 + y)*x + x^2). To get row n, expand this in powers of x then expand the coefficient of x^n in increasing powers of y.
From Philippe Deléham, Feb 16 2004: (Start)
If indexing begins at 0 we have
T(n,k) = (n+k+1)!/((n-k)!*(2k+1))!.
T(n,k) = Sum_{j>=0} T(n-1-j, k-1)*(j+1) with T(n, 0) = n+1, T(n, k) = 0 if n < k.
T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j) with T(n,k) = 0 if k < 0, T(0, 0)=1 and T(0, k) = 0 for k > 0.
G.f. for the column k: Sum_{n>=0} T(n, k)*x^n = (x^k)/(1-x)^(2k+2).
Row sums: Sum_{k>=0} T(n, k) = A001906(n+1). (End)
Antidiagonal sums are A000079(n) = Sum_{k=0..floor(n/2)} binomial(n+k+1, n-k). - Paul Barry, Jun 21 2004
Riordan array (1/(1-x)^2, x/(1-x)^2). - Paul Barry, Oct 22 2006
T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + 2*T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
For another version see A128908. - Philippe Deléham, Mar 27 2012
T(n,m) = Sum_{k=0..n-m} (binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)* binomial(n+1,m+k+1)). - Vladimir Kruchinin, Apr 13 2016
EXAMPLE
Triangle begins, 1 <= k <= n:
1
2 1
3 4 1
4 10 6 1
5 20 21 8 1
6 35 56 36 10 1
7 56 126 120 55 12 1
8 84 252 330 220 78 14 1
MAPLE
for n from 1 to 11 do seq(binomial(n+k-1, 2*k-1), k=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Apr 09 2005
# Uses function PMatrix from A357368. Adds a row and column above and to the left.
PMatrix(10, n -> n); # Peter Luschny, Oct 07 2022
MATHEMATICA
(* First program *)
u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A085478 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A078812 *) (* Clark Kimberling, Feb 25 2012 *)
(* Second program *)
Table[Binomial[n+k+1, 2*k+1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
PROG
(PARI) {T(n, k) = if( n<0, 0, binomial(n+k-1, 2*k-1))};
(PARI) {T(n, k) = polcoeff( polcoeff( x*y / (1 - (2 + y) * x + x^2) + x * O(x^n), n), k)};
(Haskell)
a078812 n k = a078812_tabl !! n !! k
a078812_row n = a078812_tabl !! n
a078812_tabl = [1] : [2, 1] : f [1] [2, 1] where
f us vs = ws : f vs ws where
ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
(us ++ [0, 0])
-- Reinhard Zumkeller, Dec 16 2013
(Sage)
@cached_function
def T(k, n):
if k==n: return 1
if k==0: return 0
return sum(i*T(k-1, n-i) for i in (1..n-k+1))
A078812 = lambda n, k: T(k, n)
[[A078812(n, k) for k in (1..n)] for n in (1..8)] # Peter Luschny, Mar 12 2016
(Sage) [[binomial(n+k+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
(Maxima)
T(n, m):=sum(binomial(2*k, n-m)*binomial(m+k, k)*(-1)^(n-m+k)*binomial(n+1, m+k+1), k, 0, n-m); /* Vladimir Kruchinin, Apr 13 2016 */
(Magma) /* As triangle */ [[Binomial(n+k-1, 2*k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 01 2018
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
CROSSREFS
This triangle is formed from odd-numbered rows of triangle A011973 read in reverse order.
Row sums give A001906. With signs: A053122.
The column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for k=1..6, resp. For k=7..24 they are A010966..(+2)..A011000 and for k=25..50 they are A017713..(+2)..A017763.
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Michael Somos, Dec 05 2002
EXTENSIONS
Edited by N. J. A. Sloane, Apr 28 2008
STATUS
approved
a(0) = 1, a(n) = Fibonacci(2*n). It has the property that a(n) = 1*a(n-1) + 2*a(n-2) + 3*a(n-3) + 4*a(n-4) + ...
+10
42
1, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717
OFFSET
0,3
COMMENTS
Number of compositions of n into one sort of 1's, two sorts of 2's, ..., k sorts of k's, ... - Joerg Arndt, Jun 21 2011
Also the number of spanning trees of a graph formed by joining a single vertex to all vertices of a path on n-1 vertices. - Edward Scheinerman (ers(AT)jhu.edu), Feb 28 2007
Row sums of triangle A128908. - Philippe Deléham, Nov 21 2007
Let P = the partial sum operator, A000012: (1; 1,1; 1,1,1; ...) and A153463 = M, the partial sum & shift operator. It appears that beginning with any randomly taken sequence S(n), iterates of the operations M * S(n), -> M * ANS, -> P * ANS, etc. (or starting with P) will rapidly converge upon a two-sequence limit cycle of (1, 2, 5, 13, 34, ...) and (1, 1, 3, 8, 21, ...). - Gary W. Adamson, Dec 27 2008
Eigensequence of triangle A004736. - Paul Barry, Nov 03 2010
a(n) = the sum of the products of all compositions of n.
Number of nonisomorphic graded posets with 0 and uniform Hasse graph of rank n, with exactly 2 elements of each rank level above 0.(Uniform used in the sense of Retakh, Serconek and Wilson. Graded poset is being used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 26 2012
a(n) is the top left entry in the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 1, 1; 1, 0, 1] or of the 3 X 3 matrix [1, 1, 1; 1, 1, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
REFERENCES
R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
LINKS
A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See pp 25, 29.
Meghann M. Gibson, Combinatorics of Compositions, Electronic Theses & Dissertations, Georgia Southern University, 2017.
Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
J. Salas and A. D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009; J. Stat. Phys. 135 (2009) 279-373. Mentions this sequence. - N. J. A. Sloane, Mar 14 2014
Luigi Santocanale, On discrete idempotent paths, arXiv:1906.05590 [math.LO], 2019.
FORMULA
a(n) = 1*a(n-1) + 2*a(n-2) + 3*a(n-3) + 4*a(n-4) + ...
G.f.: (1 -2*x + x^2)/(1 - 3*x + x^2) = 1 + x/(1 - 3*x + x^2) (see Agarwal (2000), p. 1424).
G.f.: 1/(1 - Sum_{k >= 1} k*x^k). - Joerg Arndt, Jun 21 2011
G.f.: Sum_{n >= 0} q^n / (1 - q)^(2*n). - Joerg Arndt, Dec 09 2012
a(0) = 1, a(n) = (h^(2*n) - h^(-2*n))/sqrt(5), where h = (1+sqrt(5))/2.
a(0) = 1, a(1) = 1, a(2) = 3, a(n+1) = 3*a(n) - a(n-1) for n >= 2. - Philippe Deléham, Nov 21 2007
a(n) = (((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n)/sqrt(5). - Geoffrey Critzer, Sep 23 2008
F(2n) = 1*F(2n-2) + 2*F(2n-4) + 3*F(2n-6) + 4*F(2n-8) + ...
F(2n+1) = 1 + 1*F(2n-1) + 2*F(2n-3) + 3*F(2n-5) + 4*F(2n-7) + ...
Convolutions with 1, 3, 6, 10, ..., n*(n+1)/2:
1*F(2n) + 3*F(2n-2) + 6*F(2n-4) + 10*F(2n-6) + ... = F(2n+3) - 1.
1*F(2n-1) + 3*F(2n-3) + 6*F(2n-5) + 10*F(2n-7) + ... = F(2n+2) - n - 1.
G.f.: 1/( 1 - G(0)*(1 + x)*x), where G(k) = 1 + x/(1 - x*(k+2)/(x*(k+2) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (1-x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = H(2*n, 1, 1/2) for n > 0 where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
INVERT transform of the identity function. - Alois P. Heinz, Feb 09 2021
EXAMPLE
a(5) = 55 = 1*21 + 2*8 + 3*3 + 4*1 + 5*1 = 21 + 16 + 9 + 4 + 5.
a(3) = 8 because if we multiply the compositions of three:
3; 2,1; 1,2; 1,1,1, we get 3,2,2,1 respectively, which sums to eight.
MAPLE
H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
a := n -> `if`(n = 0, 1, H(2*n, 1, 1/2)):
seq(simplify(a(n)), n=0..28); # Peter Luschny, Sep 03 2019
# third Maple program:
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-i)*i, i=1..n))
end:
seq(a(n), n=0..36); # Alois P. Heinz, Feb 09 2021
MATHEMATICA
f[list_]:=Apply[Times, list]; Table[Total[Map[f, Level[Map[Permutations, Partitions[n]], {2}]]], {n, 0, 20}]
CoefficientList[Series[(1 - 2 x + x^2)/(1 - 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *)
Join[{1}, Fibonacci[2*Range[40]]] (* G. C. Greubel, Dec 16 2022 *)
PROG
(Python)
def a(n, adict={0:1, 1:1, 2:3}):
if n in adict:
return adict[n]
adict[n]=3*a(n-1)-a(n-2)
return adict[n]
# David Nacin, Mar 04 2012
(PARI)
N=66; x='x+O('x^N);
Vec( 1/( 1 - sum(k=1, N, k*x^k ) ) )
/* Joerg Arndt, Sep 30 2012 */
(Magma) [1] cat [Fibonacci(2*n): n in [1..40]]; // G. C. Greubel, Dec 16 2022
(SageMath)
def A088305(n): return 1 if (n==0) else fibonacci(2*n)
[A088305(n) for n in range(41)] # G. C. Greubel, Dec 16 2022
CROSSREFS
Apart from initial term, same as A001906.
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Nov 05 2003
EXTENSIONS
More terms from Ray Chandler, Nov 06 2003
Further terms from Edward Scheinerman (ers(AT)jhu.edu), Feb 28 2007
STATUS
approved
Triangle of odd-numbered terms in rows of Pascal's triangle.
+10
23
1, 2, 3, 1, 4, 4, 5, 10, 1, 6, 20, 6, 7, 35, 21, 1, 8, 56, 56, 8, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 11, 165, 462, 330, 55, 1, 12, 220, 792, 792, 220, 12, 13, 286, 1287, 1716, 715, 78, 1, 14, 364, 2002, 3432, 2002, 364, 14, 15, 455, 3003, 6435, 5005, 1365, 105, 1
OFFSET
0,2
COMMENTS
Also triangle of numbers of n-sequences of 0,1 with k subsequences of consecutive 01 because this number is C(n+1,2*k+1). - Roger Cuculiere (cuculier(AT)imaginet.fr), Nov 16 2002
From Gary W. Adamson, Oct 17 2008: (Start)
Received from Herb Conn:
Let T = tan x, then
tan x = T
tan 2x = 2T / (1 - T^2)
tan 3x = (3T - T^3) / (1 - 3T^2)
tan 4x = (4T - 4T^3) / (1 - 6T^2 + T^4)
tan 5x = (5T - 10T^3 + T^5) / (1 - 10T^2 + 5T^4)
tan 6x = (6T - 20T^3 + 6T^5) / (1 - 15T^2 + 15T^4 - T^6)
tan 7x = (7T - 35T^3 + 21T^5 - T^7) / (1 - 21T^2 + 35T^4 - 7T^6)
tan 8x = (8T - 56T^3 + 56T^5 - 8T^7) / (1 - 28T^2 + 70T^4 - 28T^6 + T^8)
tan 9x = (9T - 84T^3 + 126T^5 - 36T^7 + T^9) / (1 - 36 T^2 + 126T^4 - 84T^6 + 9T^8)
... To get the next one in the series, (tan 10x), for the numerator add:
9....84....126....36....1 previous numerator +
1....36....126....84....9 previous denominator =
10..120....252...120...10 = new numerator
For the denominator add:
......9.....84...126...36...1 = previous numerator +
1....36....126....84....9.... = previous denominator =
1....45....210...210...45...1 = new denominator
...where numerators = A034867, denominators = A034839
(End)
Column k is the sum of columns 2k and 2k+1 of A007318. - Philippe Deléham, Nov 12 2008
Triangle, with zeros omitted, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
The row polynomials N(n,x) = Sum_{k=0..floor((n-1)/2)} T(n-1,k)*x^k, and D(n,x) = Sum_{k=0..floor(n/2)} A034839(n,k)*x^k, n >= 1, satisfy the recurrences N(n,x) = D(n-1,x) + N(n-1,x), D(n,x) = D(n-1,x) + x*N(n-1,x), with inputs N(1,x) = 1 = D(1,x). This is due to the Pascal triangle A007318 recurrence. Q(n,x) := tan(n*x)/tan(x) satisfies the recurrence Q(n,x) = (1 + Q(n-1,x)/(1 - v(x)*Q(n-1,x)) with input Q(1,x) = 1 and v = v(x) := (tan(x))^2. This recurrence is obtained from the addition theorem for tan(n*x) using n = 1 + (n-1). Therefore Q(n,x) = N(n,-v(x))/D(n,-v(x)). This proves the Gary W. Adamson contribution from above. See also A220673. This calculation was motivated by an e-mail of Thomas Olsen. The Oliver/Prodinger and Ma references resort to HAKEM Al Memo 239, Item 16, for the tan(n*x) formula in terms of tan(x). - Wolfdieter Lang, Jan 17 2013
The infinitesimal generator (infinigen) for the Narayana polynomials A090181/A001263 can be formed from the row polynomials P(n,y) of this entry. The resulting matrix is an instance of a matrix representation of the analytic infinigens presented in A145271 for general sets of binomial Sheffer polynomials and in A001263 and A119900 specifically for the Narayana polynomials. Given the column vector of row polynomials V = (1, P(1,x) = 2x, P(2,y) = 3x + x^2, P(3,y) = 4x + 4x^2, ...), form the lower triangular matrix M(n,k) = V(n-k,n-k), i.e., diagonally multiply the matrix with all ones on the diagonal and below by the components of V. Form the matrix MD by multiplying A132440^Transpose = A218272 = D (representing derivation of o.g.f.s) by M, i.e., MD = M*D. The non-vanishing component of the first row of (MD)^n * V / (n+1)! is the n-th Narayana polynomial. - Tom Copeland, Dec 09 2015
The diagonals of this entry are A078812 (also shifted A128908 and unsigned A053122, which are embedded in A030528, A102426, A098925, A109466, A092865). Equivalently, the antidiagonals of A078812 are the rows of A034867. - Tom Copeland, Dec 12 2015
Binomial(n,2k+1) is also the number of permutations avoiding both 132 and 213 with k peaks, i.e., positions with w[i]<w[i+1]>w[i+2]. - Lara Pudwell, Dec 19 2018
Binomial(n,2k+1) is also the number of permutations avoiding both 123 and 132 with k peaks, i.e., positions with w[i]<w[i+1]>w[i+2]. - Lara Pudwell, Dec 19 2018
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 136.
LINKS
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 6.
S.-M. Ma, On some binomial coefficients related to the evaluation of tan(nx), arXiv preprint arXiv:1205.0735 [math.CO], 2012. - From N. J. A. Sloane, Oct 13 2012
K. Oliver and H. Prodinger, The continued fraction expansion of Gauss' hypergeometric function and a new application to the tangent function, Transactions of the Royal Society of South Africa, Vol. 76 (2012), 151-154, [DOI], [PDF]. - From N. J. A. Sloane, Jan 03 2013
Eric Weisstein's World of Mathematics, Tangent. [From Eric W. Weisstein, Oct 18 2008]
FORMULA
T(n,k) = C(n+1,2k+1) = Sum_{i=k..n-k} C(i,k) * C(n-i,k).
E.g.f.: 1+(exp(x)*sinh(x*sqrt(y)))/sqrt(y). - Vladeta Jovovic, Mar 20 2005
G.f.: 1/((1-z)^2-t*z^2). - Emeric Deutsch, Apr 01 2005
T(n,k) = Sum_{j = 0..n} A034839(j,k). - Philippe Deléham, May 18 2005
Pell(n+1) = A000129(n+1) = Sum_{k=0..n} T(n,k) * 2^k = (1/n!) Sum_{k=0..n} A131980(n,k) * 2^k. - Tom Copeland, Nov 30 2007
T(n,k) = A007318(n,2k) + A007318(n,2k+1). - Philippe Deléham, Nov 12 2008
O.g.f for column k, k>=0: (1/(1-x)^2)*(x/(1-x))^(2*k). See the G.f. of this array given above by Emeric Deutsch. - Wolfdieter Lang, Jan 18 2013
T(n,k) = (x^(2*k+1))*((1+x)^n-(1-x)^n)/2. - L. Edson Jeffery, Jan 15 2014
EXAMPLE
Triangle starts:
1
2
3 1
4 4
5 10 1
6 20 6
- Philippe Deléham, Dec 12 2011
MAPLE
seq(seq(binomial(n+1, 2*k+1), k=0..floor(n/2)), n=0..14); # Emeric Deutsch, Apr 01 2005
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 12;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu] (* A034839 as a triangle *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv] (* A034867 as a triangle *)
(* Clark Kimberling, Feb 18 2012 *)
Table[Binomial[n+1, 2*k+1], {n, 0, 20}, {k, 0, Floor[n/2]}]//Flatten (* G. C. Greubel, Mar 06 2018 *)
PROG
(PARI) for(n=0, 20, for(k=0, floor(n/2), print1(binomial(n+1, 2*k+1), ", "))) \\ G. C. Greubel, Mar 06 2018
(Magma) /* as a triangle */ [[Binomial(n+1, 2*k+1): k in [0..Floor(n/2)]]: n in [0..20]]; // G. C. Greubel, Mar 06 2018
KEYWORD
nonn,tabf,easy
EXTENSIONS
More terms from Emeric Deutsch, Apr 01 2005
STATUS
approved
Expansion of (1+x)^2/(1+x+x^2).
+10
15
1, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1
OFFSET
0,1
COMMENTS
Row sums of the Riordan array ((1+x)/(1+x+x^2),x/(1+x)), A106509.
Equals INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Oct 10 2008
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} (-1)^j*binomial(2n-k-j, j)
a(n) = A049347(n-1) = A102283(n) if n >= 1. - R. J. Mathar, Aug 07 2011
From Michael Somos, Oct 15 2008: (Start)
Euler transform of length 3 sequence [ 1, -2, 1].
a(n) is multiplicative with a(3^e) = 0^e, a(p^e) = 1 if p == 1 (mod 3), a(p^e) = (-1)^e if p == 2 (mod 3).
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v) = 4 - 3*v - u * (4 - 2*v - u). (End)
a(-n) = a(n). a(n+3) = a(n) unless n = 0 or n = -3.
a(n) = Sum_{k=0..n} A128908(n,k)*(-1)^(n-k). - Philippe Deléham, Jan 22 2012
EXAMPLE
1 + x - x^2 + x^4 - x^5 + x^7 - x^8 + x^10 - x^11 + x^13 - x^14 + ...
MATHEMATICA
{1}~Join~LinearRecurrence[{-1, -1}, {1, -1}, 105] (* Jean-François Alcover, Oct 28 2019 *)
PROG
(PARI) {a(n) = if( n==0, 1, [0, 1, -1][n%3 + 1])} \\ Michael Somos, Oct 15 2008
(PARI) {a(n) = if( n==0, 1, kronecker(-3, n))} \\ Michael Somos, Oct 15 2008
(PARI) A106510(n)=kronecker(-3, n+!n) \\ M. F. Hasler, May 07 2018
KEYWORD
easy,sign,mult
AUTHOR
Paul Barry, May 04 2005
EXTENSIONS
Edited by M. F. Hasler, May 07 2018
STATUS
approved
Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x + 1)^n + x^2 - 1.
+10
13
0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 3, 4, 1, 0, 4, 7, 4, 1, 0, 5, 11, 10, 5, 1, 0, 6, 16, 20, 15, 6, 1, 0, 7, 22, 35, 35, 21, 7, 1, 0, 8, 29, 56, 70, 56, 28, 8, 1, 0, 9, 37, 84, 126, 126, 84, 36, 9, 1, 0, 10, 46, 120, 210, 252, 210, 120, 45, 10, 1, 0, 11, 56, 165
OFFSET
0,8
COMMENTS
This is essentially the usual Pascal triangle A007318, horizontally shifted and with the first three columns altered.
Let P(n;x) = (x + 1)^n + x^2 - 1. Then P(n;x) = P(n-1;x) + x*(x + 1)^(n - 1), with P(0;x) = x^2.
Let a (2,n)-torus knot be projected on the plane. The resulting projection is a planar diagram with n double points. Then, T(n,k) gives the number of state diagrams having k components that are obtained by deleting each double point, then pasting the edges in one of the two ways as shown below.
\ / \___/ \ / \ /
(1) \/ ==> (2) \/ ==> | |
/\ ___ /\ | |
/ \ / \ / \ / \
See example for the case n = 2.
REFERENCES
Colin Adams, The Knot Book, W. H. Freeman and Company, 1994.
Louis H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11327 (rows 0 <= n <= 150, flattened).
Agnijo Banerjee, Knot theory [Foil knot family].
Allison Henrich, Rebecca Hoberg, Slavik Jablan, Lee Johnson, Elizabeth Minten and Ljiljana Radovic, The Theory of Pseudoknots, arXiv preprint arXiv:1210.6934 [math.GT], 2012.
Abdullah Kopuzlu, Abdulgani Şahin and Tamer Ugur, On polynomials of K(2,n) torus knots, Applied Mathematical Sciences, Vol. 3 (2009), 2899-2910.
Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
Wikipedia, Torus knot.
Xinfei Li, Xin Liu and Yong-Chang Huang, Tackling tangledness of cosmic strings by knot polynomial topological invariants, arxiv preprint arXiv:1602.08804 [hep-th], 2016.
FORMULA
T(n,1) = A001477(n).
T(n,2) = A152947(n).
T(n,k) = A007318(n,k-1), k >= 1.
T(n,0) = 0, T(0,1) = 1, T(0,2) = 1 and T(n,k) = T(n-1,k) + A007318(n-1,k-1).
G.f.: (x^2 + y*x/(1 - y*(x + 1)))/(1 - y).
EXAMPLE
The triangle T(n,k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0: 0 0 1
1: 0 1 1
2: 0 2 2
3: 0 3 4 1
4: 0 4 7 4 1
5: 0 5 11 10 5 1
6: 0 6 16 20 15 6 1
7: 0 7 22 35 35 21 7 1
8: 0 8 29 56 70 56 28 8 1
9: 0 9 37 84 126 126 84 36 9 1
10: 0 10 46 120 210 252 210 120 45 10 1
11: 0 11 56 165 330 462 462 330 165 55 11 1
12: 0 12 67 220 495 792 924 792 495 220 66 12 1
13: 0 13 79 286 715 1287 1716 1716 1287 715 286 78 13 1
14: 0 14 92 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
...
The states of the (2,2)-torus knot (Hopf Link) are the last four diagrams:
____ ____
/ \/ \
/ /\ \
| | | |
| | | |
\ \/ /
\____/\____/
___ ____ __________
/ \ / \ / __ \
/ / \ \ / / \ \
| | | | | | | |
| | | | | | | |
\ \/ / \ \/ /
\_____/\_____/ \____/\____/
____ ____ ____ ____ ____________ __________
/ \ / \ / \ / \ / __ \ / __ \
/ / \ \ / / \ \ / / \ \ / / \ \
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
\ \ / / \ \__/ / \ \ / / \ \__/ /
\____/ \____/ \____________/ \____/ \____/ \__________/
There are 2 diagrams that consist of two components, and 2 diagrams that consist of one component.
MATHEMATICA
f[n_] := CoefficientList[ Expand[(x + 1)^n + x^2 - 1], x]; Array[f, 12, 0] // Flatten (* or *)
CoefficientList[ CoefficientList[ Series[(x^2 + y*x/(1 - y*(x + 1)))/(1 - y), {y, 0, 11}, {x, 0, 11}], y], x] // Flatten (* Robert G. Wilson v, Mar 08 2018 *)
PROG
(Maxima)
P(n, x) := (x + 1)^n + x^2 - 1$
T : []$
for i:0 thru 20 do
T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(2, i)))$
T;
(PARI) row(n) = Vecrev((x + 1)^n + x^2 - 1);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
CROSSREFS
Row sums: A000079 (powers of 2).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300454 (twist knot).
When n = 3 (trefoil), the corresponding 4-tuplet (0,3,4,1) appears in several triangles: A030528 (row 5), A256130 (row 3), A128908 (row 3), A186084 (row 6), A284938 (row 7), A101603 (row 3), A155112 (row 3), A257566 (row 3).
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved
Riordan array ((1-x+x^2)/(1+x^2), x/(1+x^2)).
+10
1
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 2, -2, -1, 1, -1, 1, 3, -3, -1, 1, 0, -3, 3, 4, -4, -1, 1, 1, -1, -6, 6, 5, -5, -1, 1, 0, 4, -4, -10, 10, 6, -6, -1, 1, -1, 1, 10, -10, -15, 15, 7, -7, -1, 1, 0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1
OFFSET
0,12
COMMENTS
Triangle T(n,k), read by rows, given by (-1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
FORMULA
T(n,k) = T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(0,1) = -1, T(0,2) = 0.
G.f.: (1-x+x^2)/(1-y*x+x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A184334(n), A163805(n), A000007(n), A028310(n), A025169(n-1), A005320(n) (n>0) for x = -1, 0, 1, 2, 3, 4 respectively.
T(n,n) = 1, T(n+1,n) = -1, T(n+2,n) = -n, T(n+3,n) = n+1, T(n+4,n) = n(n+1)/2 = A000217(n).
T(2n,2k) = (-1)^(n-k) * A128908(n,k), T(2n+1,2k+1) = -T(2n+1,2k) = A129818(n,k), T(2n+2,2k+1) = (-1)*A053122(n,k). - Philippe Deléham, Feb 09 2012
EXAMPLE
Triangle begins:
1;
-1, 1;
0, -1, 1;
1, -1, -1, 1;
0, 2, -2, -1, 1;
-1, 1, 3, -3, -1, 1;
0, -3, 3, 4, -4, -1, 1;
1, -1, -6, 6, 5, -5, -1, 1;
0, 4, -4, -10, 10, 6, -6, -1, 1;
-1, 1, 10, -10, -15, 15, 7, -7, -1, 1;
0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1;
1, -1, -15, 15, 35, -35, -28, 28, 9, -9, -1, 1;
MATHEMATICA
CoefficientList[Series[CoefficientList[Series[(1 - x + x^2)/(1 - y*x + x^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* G. C. Greubel, Jun 27 2017 *)
CROSSREFS
Cf. A206474 (unsigned version).
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Feb 08 2012
STATUS
approved
Riordan array ((1+x-x^2)/(1-x^2), x/(1-x^2)).
+10
1
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 0, 3, 3, 4, 4, 1, 1, 1, 1, 6, 6, 5, 5, 1, 1, 0, 4, 4, 10, 10, 6, 6, 1, 1, 1, 1, 10, 10, 15, 15, 7, 7, 1, 1, 0, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1, 1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1
OFFSET
0,12
COMMENTS
Triangle T(n,k), read by rows, given by (1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Antidiagonal sums are A158780(n+1).
Row sums are 2*Fibonacci(n) = 2*A000045(n), n>0.
FORMULA
T(2n, 2k) = A128908(n,k), T(2n+1, 2k) = T(2n+1, 2k+1) = A085478(n,k) = Binomial (n+k, 2k), T(2n+2, 2k+1) = A078812(n,k) = Binomial(n+k-1, 2k-1).
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = T(0,1) = 1, T(0,2) = 0.
G.f.: (1+x-x^2)/(1-x*y-x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n* A000129(n) (n>0), A000007(n), A135528(n-1), A055389(n) for x = -2, -1, 0, 1 respectively .
EXAMPLE
Triangle begins :
1
1, 1
0, 1, 1
1, 1, 1, 1
0, 2, 2, 1, 1
1, 1, 3, 3, 1, 1
0, 3, 3, 4, 4, 1, 1
1, 1, 6, 6, 5, 5, 1, 1
0, 4, 4, 10, 10, 6, 6, 1, 1
1, 1, 10, 10, 15, 15, 7, 7, 1, 1
0, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1
1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1
MATHEMATICA
t[1, 0] = 1; t[2, 0] = 0; t[n_, n_] = 1; t[n_ /; n >= 0, k_ /; k >= 0] /; k <= n := t[n, k] = t[n-1, k-1] + t[n-2, k]; t[n_, k_] = 0; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Feb 08 2012
STATUS
approved
Riordan array ((1-x+x^2)/(1-x)^2, x/(1-x)^2).
+10
1
1, 1, 1, 2, 3, 1, 3, 7, 5, 1, 4, 14, 16, 7, 1, 5, 25, 41, 29, 9, 1, 6, 41, 91, 92, 46, 11, 1, 7, 63, 182, 246, 175, 67, 13, 1, 8, 92, 336, 582, 550, 298, 92, 15, 1, 9, 129, 582, 1254, 1507, 1079, 469, 121, 17, 1, 10, 175, 957, 2508, 3718, 3367, 1925, 696, 154
OFFSET
0,4
COMMENTS
Triangle T(n,k), read by rows, given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are A111282(n+1) = A025169(n-1).
Diagonal sums are A122391(n+1) = A003945(n-1).
FORMULA
G.f.: (1 - x + x^2)/(1 - 2*x - x*y + x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = 2, T(2,1) = 3, T(2,2) = 1, T(n,k) = 0 if k < 0 or k > n.
The Riordan square (see A321620) of 1 + x/(1 - x)^2. - Peter Luschny, Mar 06 2022
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
3, 7, 5, 1;
4, 14, 16, 7, 1;
5, 25, 41, 29, 9, 1;
6, 41, 91, 92, 46, 11, 1;
7, 63, 182, 246, 175, 67, 13, 1;
MAPLE
# The function RiordanSquare is defined in A321620.
RiordanSquare(1+x/(1-x)^2, 8); # Peter Luschny, Mar 06 2022
MATHEMATICA
CoefficientList[#, y] & /@
CoefficientList[
Series[(1 - x + x^2)/(1 - 2*x - x*y + x^2), {x, 0, 12}], x] (* Wouter Meeussen, Jan 25 2014 *)
CROSSREFS
Cf. Columns: A028310, A004006.
Cf. Diagonals: A000012, A005408, A130883.
Cf. Similar sequences: A078812, A085478, A111125, A128908, A165253, A207606.
Cf. A321620.
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jan 24 2014
STATUS
approved

Search completed in 0.020 seconds