Displaying 1-10 of 28 results found.
1, 49, 169, 361, 625, 961, 1369, 1849, 2401, 3025, 3721, 4489, 5329, 6241, 7225, 8281, 9409, 10609, 11881, 13225, 14641, 16129, 17689, 19321, 21025, 22801, 24649, 26569, 28561, 30625, 32761, 34969, 37249, 39601, 42025, 44521, 47089, 49729, 52441, 55225
COMMENTS
Except for 2, exponents e such that x^e-x+1 is reducible.
FORMULA
G.f.: ( 1+46*x+25*x^2 ) / (1-x)^3. - R. J. Mathar, Mar 10 2011
MATHEMATICA
Table[(6n+1)^2, {n, 0, 100}] (* or *)
CoefficientList[Series[(1 + 46*x + 25*x^2)/(1 - x)^3, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 13 2014 *)
LinearRecurrence[{3, -3, 1}, {1, 49, 169}, 50] (* Harvey P. Dale, Feb 17 2023 *)
1, 25, 81, 169, 289, 441, 625, 841, 1089, 1369, 1681, 2025, 2401, 2809, 3249, 3721, 4225, 4761, 5329, 5929, 6561, 7225, 7921, 8649, 9409, 10201, 11025, 11881, 12769, 13689, 14641, 15625, 16641, 17689, 18769, 19881, 21025, 22201, 23409, 24649, 25921, 27225, 28561, 29929
COMMENTS
A bisection of A016754. Sequence arises from reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
FORMULA
G.f.: (1 + 22*x + 9*x^2)/(1 - x)^3.
a(n+1) = a(n) + 16 + 8*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2).
a(n-1)*a(n+1) = (a(n) - 16)^2 ; a(n+1) - a(n-1) = 16*sqrt(a(n)).
Sum_{n>=0} 1/a(n) = G/2 + Pi^2/16, where G is the Catalan constant ( A006752). - Amiram Eldar, Jun 28 2020
E.g.f.: (1 + 24*x + 16*x^2)*exp(x). (End)
MATHEMATICA
(4*Range[0, 40] +1)^2 (* or *) LinearRecurrence[{3, -3, 1}, {1, 25, 81}, 40] (* Harvey P. Dale, Nov 20 2012 *)
PROG
(SageMath) [(4*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), this sequence (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).
1, 36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601, 3136, 3721, 4356, 5041, 5776, 6561, 7396, 8281, 9216, 10201, 11236, 12321, 13456, 14641, 15876, 17161, 18496, 19881, 21316, 22801, 24336, 25921
FORMULA
Sum_{n>=0} 1/a(n) = polygamma(1, 1/5)/25 = 1.050695088216... - Amiram Eldar, Oct 02 2020
E.g.f.: (1 + 35*x + 25*x^2)*exp(x). (End)
MATHEMATICA
(5*Range[0, 40]+1)^2 (* or *) LinearRecurrence[{3, -3, 1}, {1, 36, 121}, 40] (* Harvey P. Dale, Jul 11 2012 *)
PROG
(SageMath) [(5*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), A016814 (m=4), this sequence (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).
1, 121, 441, 961, 1681, 2601, 3721, 5041, 6561, 8281, 10201, 12321, 14641, 17161, 19881, 22801, 25921, 29241, 32761, 36481, 40401, 44521, 48841, 53361, 58081, 63001, 68121, 73441, 78961, 84681, 90601, 96721, 103041, 109561, 116281, 123201
FORMULA
a(n) = a(n-1) + 40*(5*n-2), n > 0; a(0)=1. - Miquel Cerda, Oct 30 2016
MATHEMATICA
Table[(10 n+1)^2, {n, 0, 35}]
FoldList[#1 + 200 #2 - 80 &, 1, Range@ 35]
CoefficientList[Series[(1+118x+81x^2)/(1-x)^3, {x, 0, 35}], x] (* End *)
LinearRecurrence[{3, -3, 1}, {1, 121, 441}, 40] (* Harvey P. Dale, Sep 21 2017 *)
PROG
(PARI) for(n=0, 35, print1((10*n+1)^2", ")); \\ Bruno Berselli, Jul 30 2011
(SageMath) [(10*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), this sequence (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).
1, 256, 2401, 10000, 28561, 65536, 130321, 234256, 390625, 614656, 923521, 1336336, 1874161, 2560000, 3418801, 4477456, 5764801, 7311616, 9150625, 11316496, 13845841, 16777216, 20151121, 24010000, 28398241, 33362176, 38950081, 45212176, 52200625, 59969536, 68574961
FORMULA
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5).
G.f.: -((1+251*x+1131*x^2+545*x^3+16*x^4)/(-1+x)^5). (End)
E.g.f.: exp(x)*(1+255*x+945*x^2+594*x^3+81*x^4). - Wolfdieter Lang, Apr 02 2017
Sum_{n>=0} 1/a(n) = PolyGamma(3, 1/3)/486. - Amiram Eldar, Mar 29 2022
MATHEMATICA
(3*Range[0, 30]+1)^4 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 256, 2401, 10000, 28561}, 30] (* Harvey P. Dale, Oct 21 2015 *)
1, 1024, 16807, 100000, 371293, 1048576, 2476099, 5153632, 9765625, 17210368, 28629151, 45435424, 69343957, 102400000, 147008443, 205962976, 282475249, 380204032, 503284375, 656356768, 844596301, 1073741824, 1350125107, 1680700000, 2073071593, 2535525376
COMMENTS
In general the e.g.f. of {(1 + 3*m)^n}_{m>=0} is E(n,x) = exp(x)*Sum_{m=0..n} A282629(n, m)*x^m, and the o.g.f. is G(n, x) = (Sum_{m=0..n} A225117(n, n-m)*x^m)/(1-x)^(n+1). - Wolfdieter Lang, Apr 02 2017
FORMULA
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, May 13 2012
O.g.f.: (1+1018*x+10678*x^2+14498*x^3+2933*x^4+32*x^5)/(1-x)^6.
E.g.f: exp(x)*(1+1023*x+7380*x^2+8775*x^3+2835*x^4+243*x^5). (End)
Sum_{n>=0} 1/a(n) = 2*Pi^5/(3^6*sqrt(3)) + 121*zeta(5)/3^5. - Amiram Eldar, Mar 29 2022
MATHEMATICA
(3Range[0, 20]+1)^5 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 1024, 16807, 100000, 371293, 1048576}, 30] (* Harvey P. Dale, May 13 2012 *)
1, 64, 225, 484, 841, 1296, 1849, 2500, 3249, 4096, 5041, 6084, 7225, 8464, 9801, 11236, 12769, 14400, 16129, 17956, 19881, 21904, 24025, 26244, 28561, 30976, 33489, 36100, 38809, 41616, 44521, 47524
FORMULA
E.g.f.: (1 + 63*x + 49*x^2)*exp(x). (End)
Sum_{n>=0} 1/a(n) = Psi'(1/7)/49 = 1.027703498712483534.. - R. J. Mathar, May 07 2024
MATHEMATICA
CoefficientList[Series[(1+61*x+36*x^2)/(1-x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 27 2013 *)
PROG
(SageMath) [(7*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), A016814 (m=4), A016862 (m=5), A016922 (m=6), this sequence (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).
1, 81, 289, 625, 1089, 1681, 2401, 3249, 4225, 5329, 6561, 7921, 9409, 11025, 12769, 14641, 16641, 18769, 21025, 23409, 25921, 28561, 31329, 34225, 37249, 40401, 43681, 47089, 50625, 54289, 58081
FORMULA
G.f.: (1 + 78*x + 49*x^2)/(1-x)^3. - R. J. Mathar, Mar 21 2016
E.g.f.: (1 + 80*x + 64*x^2)*exp(x). (End)
Sum_{n>=0} 1/a(n) = psi'(1/8)/64 = 1.02168958507793.. - R. J. Mathar, May 07 2024
PROG
(SageMath) [(8*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), this sequence (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).
1, 100, 361, 784, 1369, 2116, 3025, 4096, 5329, 6724, 8281, 10000, 11881, 13924, 16129, 18496, 21025, 23716, 26569, 29584, 32761, 36100, 39601, 43264, 47089, 51076, 55225, 59536, 64009, 68644
FORMULA
E.g.f.: (1 + 99*x + 81*x^2)*exp(x). (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 100, 361}, 50] (* Harvey P. Dale, Feb 25 2024 *)
PROG
(SageMath) [(9*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), this sequence (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).
1, 144, 529, 1156, 2025, 3136, 4489, 6084, 7921, 10000, 12321, 14884, 17689, 20736, 24025, 27556, 31329, 35344, 39601, 44100, 48841, 53824, 59049, 64516, 70225, 76176, 82369, 88804, 95481, 102400
FORMULA
G.f.: (1 + 141*x + 100*x^2)/(1-x)^3.
E.g.f.: (1 + 143*x + 121*x^2)*exp(x). (End)
MATHEMATICA
(11*Range[0, 30]+1)^2 (* or *) LinearRecurrence[{3, -3, 1}, {1, 144, 529}, 30] (* Harvey P. Dale, May 05 2014 *)
PROG
(Magma) [(11*n+1)^2: n in [0..50]]; // G. C. Greubel, Dec 24 2022
(SageMath) [(11*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), this sequence (m=11), A017534 (m=12), A134934 (m=14).
Search completed in 0.020 seconds
|