[go: up one dir, main page]

login
Search: a001615 -id:a001615
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = gcd(sigma(n), psi(n)), where sigma is the sum of divisors function, A000203, and psi is the Dedekind psi function, A001615.
+20
19
1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
OFFSET
1,2
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 8, although a(4) = 1 and a(27) = 4. See A344702.
A more specific property holds: for prime p that does not divide n, a(p*n) = a(p) * a(n). In particular, on squarefree numbers (A005117) this sequence coincides with sigma and psi, which are multiplicative.
If prime p divides the squarefree part of n then p+1 divides a(n). (For example, 20 has square part 4 and squarefree part 5, so 5+1 divides a(20) = 6.) So a(n) = 1 only if n is square. The first square n with a(n) > 1 is a(196) = 21. See A344703.
Conjecture: the set of primes that appear in the sequence is A065091 (the odd primes). 5 does not appear as a term until a(366025) = 5, where 366025 = 5^2 * 11^4. At this point, the missing numbers less than 22 are 2, 10 and 17. 17 appears at the latest by a(17^2 * 103^16) = 17.
FORMULA
a(n) = gcd(A000203(n), A001615(n)).
For prime p, a(p^e) = (p+1)^(e mod 2).
For prime p with gcd(p, n) = 1, a(p*n) = a(p) * a(n).
a(A007913(n)) | a(n).
a(n) = gcd(A000203(n), A244963(n)) = gcd(A001615(n), A244963(n)).
a(n) = A000203(n) / A344696(n).
a(n) = A001615(n) / A344697(n).
MATHEMATICA
Table[GCD[DivisorSigma[1, n], DivisorSum[n, MoebiusMu[n/#]^2*#&]], {n, 100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A344695(n) = gcd(sigma(n), A001615(n));
(Python 3.8+)
from math import prod, gcd
from sympy import primefactors, divisor_sigma
def A001615(n):
plist = primefactors(n)
return n*prod(p+1 for p in plist)//prod(plist)
def A344695(n): return gcd(A001615(n), divisor_sigma(n)) # Chai Wah Wu, Jun 03 2021
CROSSREFS
Cf. A000203, A001615, A005117, A244963, A344696, A344697, A344702, A344703 (numbers k for which a(k^2) > 1).
Subsets of range: A008864, A065091 (conjectured).
KEYWORD
nonn
AUTHOR
Antti Karttunen and Peter Munn, May 26 2021
STATUS
approved
Decimal expansion of the asymptotic mean of phi(k)/psi(k), where phi(k) is Euler totient function (A000010) and psi(k) is Dedekind psi function (A001615).
+20
15
4, 7, 1, 6, 8, 0, 6, 1, 3, 6, 1, 2, 9, 9, 7, 8, 6, 8, 0, 7, 5, 2, 3, 5, 6, 3, 3, 0, 8, 0, 4, 8, 2, 0, 8, 7, 4, 2, 5, 9, 2, 6, 3, 8, 2, 0, 0, 6, 9, 8, 6, 8, 8, 3, 6, 3, 5, 7, 3, 7, 2, 5, 5, 4, 1, 7, 7, 3, 2, 1, 1, 6, 7, 5, 9, 6, 8, 2, 7, 4, 4, 0, 9, 6, 2, 1, 0, 0, 2, 7, 3, 7, 6, 9, 4, 9, 0, 2, 3, 0, 3, 1, 3, 0, 1, 1
OFFSET
0,1
COMMENTS
Also, the asymptotic mean of A162511. - Amiram Eldar, Sep 18 2022
LINKS
V. Sitaramaiah and M. V. Subbarao, Some asymptotic formulae involving powers of arithmetic functions, Number Theory, Madras 1987, Springer, 1989, pp. 201-234, alternative link.
FORMULA
Equals lim_{m->oo} (1/m)*Sum_{k=1..m} phi(k)/psi(k).
Equals Product_{p prime} (1 - 2/(p * (p+1))).
Equals A065472 / zeta(2). - Amiram Eldar, Sep 18 2022
EXAMPLE
0.47168061361299786807523563308048208742592638200698...
MATHEMATICA
$MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-2, 1, 2}, {0, -4, 6}, m]; RealDigits[(2/3) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
PROG
(PARI) prodeulerrat(1 - 2/(p*(p+1))) \\ Vaclav Kotesovec, Sep 19 2020
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 02 2019
EXTENSIONS
More digits from Vaclav Kotesovec, Sep 19 2020
STATUS
approved
Dirichlet inverse of Dedekind's psi, A001615.
+20
12
1, -3, -4, 3, -6, 12, -8, -3, 4, 18, -12, -12, -14, 24, 24, 3, -18, -12, -20, -18, 32, 36, -24, 12, 6, 42, -4, -24, -30, -72, -32, -3, 48, 54, 48, 12, -38, 60, 56, 18, -42, -96, -44, -36, -24, 72, -48, -12, 8, -18, 72, -42, -54, 12, 72, 24, 80, 90, -60, 72, -62, 96, -32, 3, 84, -144, -68, -54, 96, -144, -72, -12, -74, 114, -24
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} psi(k) * A(x^k). - Ilya Gutkovskiy, Sep 04 2019
From Amiram Eldar, Oct 14 2020: (Start)
Multiplicative with a(p^e) = (-1)^e * (p+1).
a(n) = A008836(n) * A048250(n). (End)
Dirichlet g.f.: zeta(2*s)/(zeta(s-1)*zeta(s)). - Amiram Eldar, Dec 05 2022
MATHEMATICA
psi[n_] := If[n == 1, 1, n Times @@ (1 + 1/FactorInteger[n][[All, 1]])];
a[n_] := a[n] = If[n == 1, 1, -Sum[psi[n/d] a[d], {d, Most@ Divisors[n]}]];
Array[a, 75] (* Jean-François Alcover, Feb 15 2020 *)
f[p_, e_] := (-1)^e * (p + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
PROG
(PARI)
A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
A323363(n) = if(1==n, 1, -sumdiv(n, d, if(d<n, A001615(n/d)*A323363(d), 0)));
CROSSREFS
Cf. A048250 (absolute values).
KEYWORD
sign,mult,easy
AUTHOR
Antti Karttunen, Jan 13 2019
STATUS
approved
Dedekind psi function applied to the odd part of n: a(n) = A001615(A000265(n)).
+20
11
1, 1, 4, 1, 6, 4, 8, 1, 12, 6, 12, 4, 14, 8, 24, 1, 18, 12, 20, 6, 32, 12, 24, 4, 30, 14, 36, 8, 30, 24, 32, 1, 48, 18, 48, 12, 38, 20, 56, 6, 42, 32, 44, 12, 72, 24, 48, 4, 56, 30, 72, 14, 54, 36, 72, 8, 80, 30, 60, 24, 62, 32, 96, 1, 84, 48, 68, 18, 96, 48, 72, 12, 74, 38, 120, 20, 96, 56, 80, 6, 108, 42, 84, 32, 108
OFFSET
1,3
COMMENTS
Coincides with A000593 on A122132.
LINKS
FORMULA
Multiplicative with a(2^e) = 1, a(p^e) = (p+1)*p^(e-1) for all odd primes p.
a(n) = A001615(A000265(n)).
a(n) = A206787(n) * A336651(n). - Antti Karttunen, Feb 11 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4/Pi^2 = 0.405284... (A185199). - Amiram Eldar, Nov 19 2022
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s))*(4^s-2^(s+1))/(4^s-1). - Amiram Eldar, Jan 04 2023
MATHEMATICA
f[p_, e_] := If[p == 2, 1, (p + 1)*p^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2021 *)
PROG
(PARI) A347385(n) = if(1==n, n, my(f=factor(n>>valuation(n, 2))); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Aug 31 2021
STATUS
approved
Partial sums of A001615.
+20
10
1, 4, 8, 14, 20, 32, 40, 52, 64, 82, 94, 118, 132, 156, 180, 204, 222, 258, 278, 314, 346, 382, 406, 454, 484, 526, 562, 610, 640, 712, 744, 792, 840, 894, 942, 1014, 1052, 1112, 1168, 1240, 1282, 1378, 1422, 1494, 1566, 1638, 1686, 1782, 1838, 1928, 2000, 2084
OFFSET
1,2
COMMENTS
a(n) is even for n >= 2. - Jianing Song, Nov 24 2018
REFERENCES
W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88; http://scientificadvances.co.in; DOI: http://dx.doi.org/10.18642/jantaa_7100121599
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88.
FORMULA
a(n) = Sum_{i=1..n} A001615(i) = Sum_{i=1..n} (n * Product_{p|n, p prime} (1 + 1/p)).
a(n) = 15*n^2/(2*Pi^2) + O(n*log(n)). - Enrique Pérez Herrero, Jan 14 2012
a(n) = Sum_{i=1..n} A063659(i) * floor(n/i). - Enrique Pérez Herrero, Feb 23 2013
a(n) = (1/2)*Sum_{k=1..n} mu(k)^2 * floor(n/k) * floor(1+n/k), where mu(k) is the Moebius function. - Daniel Suteu, Nov 19 2018
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (A013928(1+floor(n/k)) - A013928(1+floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k)^2 * floor(n/k) * floor(1+n/k))/2. - Daniel Suteu, Nov 23 2018
MAPLE
with(numtheory): a:=n->(1/2)*add(mobius(k)^2*floor(n/k)*floor(1+n/k), k=1..n); seq(a(n), n=1..55); # Muniru A Asiru, Nov 24 2018
MATHEMATICA
Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k], {k, 1, n}], {n, 60}] (* G. C. Greubel, Nov 23 2018 *)
psi[n_] := If[n==1, 1, n*Times@@(1 + 1/FactorInteger[n][[;; , 1]])]; Accumulate[Array[psi, 50]] (* Amiram Eldar, Nov 23 2018 *)
PROG
(PARI)
S(n) = sum(k=1, sqrtint(n), moebius(k)*(n\(k*k))); \\ see: A013928
a(n) = sum(k=1, sqrtint(n), k*(k+1) * (S(n\k) - S(n\(k+1))))/2 + sum(k=1, n\(1+sqrtint(n)), moebius(k)^2*(n\k)*(1+n\k))/2; \\ Daniel Suteu, Nov 23 2018
(Sage)
def A173290(n) :
return add(k*mul(1+1/p for p in prime_divisors(k)) for k in (1..n))
[A173290(n) for n in (1..52)] # Peter Luschny, Jun 10 2012
(Magma) [(&+[MoebiusMu(k)^2*Floor(n/k)*Floor(1 + n/k): k in [1..n]])/2: n in [1..60]]; // G. C. Greubel, Nov 23 2018
CROSSREFS
Cf. A082020.
Cf. A175836 (partial products of the Dedekind psi function).
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 15 2010
STATUS
approved
a(n) = Product_{i=1..n} psi(i) where psi is the Dedekind psi function (A001615).
+20
10
1, 3, 12, 72, 432, 5184, 41472, 497664, 5971968, 107495424, 1289945088, 30958682112, 433421549568, 10402117189632, 249650812551168, 5991619501228032, 107849151022104576, 3882569436795764736
OFFSET
1,2
COMMENTS
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A060648(gcd(i,j)) for 1 <= i,j <= n, note that A060648 is the Inverse Möbius transform of A001615. - Enrique Pérez Herrero, Aug 12 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..423
Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49
Eric Weisstein's World of Mathematics, Le Paige's Theorem
FORMULA
a(n) = A059381(n)/A001088(n).
MAPLE
A175836 := proc(n) option remember; local p; `if`(n<2, 1, n*mul(1+1/p, p=factorset(n))*A175836(n-1)) end: # Peter Luschny, Feb 28 2014
MATHEMATICA
JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/# ]&]/; (n>0)&&IntegerQ[n];
DedekindPsi[n_]:=JordanTotient[n, 2]/EulerPhi[n];
A175836[n_]:=Times@@DedekindPsi/@Range[n]
PROG
(PARI) a=direuler(p=2, 100, (1+X)/(1-p*X)); for(i=2, #a, a[i]*=a[i-1]); a
\\ Charles R Greathouse IV, Jul 29 2011
(Haskell)
a175836 n = a175836_list !! (n-1)
a175836_list = scanl1 (*) a001615_list
-- Reinhard Zumkeller, Mar 01 2014
KEYWORD
nonn
AUTHOR
STATUS
approved
Partial alternating sums of the Dedekind psi function (A001615): a(n) = Sum_{k=1..n} (-1)^(k+1) * psi(k).
+20
10
1, -2, 2, -4, 2, -10, -2, -14, -2, -20, -8, -32, -18, -42, -18, -42, -24, -60, -40, -76, -44, -80, -56, -104, -74, -116, -80, -128, -98, -170, -138, -186, -138, -192, -144, -216, -178, -238, -182, -254, -212, -308, -264, -336, -264, -336, -288, -384, -328, -418
OFFSET
1,2
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n) = -(3/(2*Pi^3)) * n^2 + O(n * log(n)^(2/3)) (Tóth, 2017).
MATHEMATICA
psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Accumulate[Array[(-1)^(# + 1)*psi[#] &, 50]]
PROG
(PARI) f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
a(n) = sum(k=1, n, (-1)^(k+1) * f(k)); \\ Michel Marcus, Oct 15 2022
CROSSREFS
Similar sequences: A068762, A068773, A307704.
KEYWORD
sign
AUTHOR
Amiram Eldar, Oct 14 2022
STATUS
approved
a(n) = A001615(n) - n.
+20
9
0, 1, 1, 2, 1, 6, 1, 4, 3, 8, 1, 12, 1, 10, 9, 8, 1, 18, 1, 16, 11, 14, 1, 24, 5, 16, 9, 20, 1, 42, 1, 16, 15, 20, 13, 36, 1, 22, 17, 32, 1, 54, 1, 28, 27, 26, 1, 48, 7, 40, 21, 32, 1, 54, 17, 40, 23, 32, 1, 84, 1, 34, 33, 32, 19, 78, 1, 40, 27, 74, 1, 72
OFFSET
1,4
COMMENTS
Analogous to A051953.
a(n) = A051953(n) if n is an element of A000961.
a(n) > A051953(n) if n is an element of A024619.
The sum of the proper divisors d of n such that n/d is squarefree. - Amiram Eldar, Sep 06 2019
FORMULA
a(n) = A001615(n) - n.
a(n) = Sum_{d|n, d<n} (mu(n/d)^2 * d). - Amiram Eldar, Sep 06 2019
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = 15/Pi^2 - 1 = 0.519817... . - Amiram Eldar, Dec 08 2023
EXAMPLE
0 is a term because A001615(1) - 1 = 0.
1 is a term because A001615(2) - 2 = 1.
3 is a term because A001615(9) - 9 = 3.
MATHEMATICA
a[1] = 0; a[n_] := n * (Times @@ (1 + 1/FactorInteger[n][[;; , 1]]) - 1); Array[a, 100] (* Amiram Eldar, Sep 06 2019 *)
PROG
(PARI) a(n) = n*(sumdivmult(n, d, issquarefree(d)/d) - 1); \\ Michel Marcus, Mar 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Torlach Rush, Mar 16 2019
STATUS
approved
a(n) = sigma(n) / gcd(sigma(n), A001615(n)).
+20
9
1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 10, 7, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 10, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 21, 1, 57, 13
OFFSET
1,4
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 35, although a(4) = 7 and a(27) = 10. See A344702.
FORMULA
a(n) = A000203(n) / A344695(n).
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A344696(n) = { my(u=sigma(n)); (u/gcd(u, A001615(n))); };
CROSSREFS
Cf. A000203, A001615, A005117 (positions of ones), A344695, A344697, A344698, A344702.
Cf. also A344756.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 26 2021
STATUS
approved
a(n) = A001615(n) / gcd(sigma(n), A001615(n)).
+20
9
1, 1, 1, 6, 1, 1, 1, 4, 12, 1, 1, 6, 1, 1, 1, 24, 1, 12, 1, 6, 1, 1, 1, 4, 30, 1, 9, 6, 1, 1, 1, 16, 1, 1, 1, 72, 1, 1, 1, 4, 1, 1, 1, 6, 12, 1, 1, 24, 56, 30, 1, 6, 1, 9, 1, 4, 1, 1, 1, 6, 1, 1, 12, 96, 1, 1, 1, 6, 1, 1, 1, 48, 1, 1, 30, 6, 1, 1, 1, 24, 108, 1, 1, 6, 1, 1, 1, 4, 1, 12, 1, 6, 1, 1, 1, 16, 1, 56, 12, 180
OFFSET
1,4
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 27, although a(4) = 6 and a(27) = 9. See A344702.
FORMULA
a(n) = A001615(n) / A344695(n).
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A344697(n) = { my(u=A001615(n)); (u/gcd(u, sigma(n))); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 26 2021
STATUS
approved

Search completed in 0.168 seconds