[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a005361 -id:a005361
     Sort: relevance | references | number | modified | created      Format: long | short | data
Highly powerful numbers: numbers with record value of the product of the exponents in prime factorization (A005361).
(Formerly M3333)
+20
29
1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1296, 1728, 2592, 3456, 5184, 7776, 10368, 15552, 20736, 31104, 41472, 62208, 86400, 108000, 129600, 194400, 216000, 259200, 324000, 432000, 518400, 648000, 972000, 1296000, 1944000, 2592000
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..609 (terms 1..300 from T. D. Noe)
G. E. Hardy and M. V. Subbarao, Highly powerful numbers, Congress. Numer., Vol. 37 (1983), pp. 277-307. (Annotated scanned copy)
C. B. Lacampagne and J. L. Selfridge, Large highly powerful numbers are cubeful, Proc. Amer. Math. Soc., Vol. 91, No. 2 (1984), pp. 173-181.
FORMULA
For n = Product p_i^e_i, let b(n) = Product e_i; then n is highly powerful if b(n) sets a new record.
MATHEMATICA
a = {1}; b = {1}; f[n_] := Times @@ Last /@ FactorInteger[n]; Do[If[f@ n > Max[b], And[AppendTo[b, f@ n], AppendTo[a, n]]], {n, 1000000}]; a (* Michael De Vlieger, Aug 28 2015 *)
With[{s = Array[Times @@ FactorInteger[#][[All, -1]] &, 3*10^6]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Oct 15 2017 *)
DeleteDuplicates[Table[{n, Times@@FactorInteger[n][[All, 2]]}, {n, 26*10^5}], GreaterEqual[#1[[2]], #2[[2]]]&][[All, 1]] (* Harvey P. Dale, May 13 2022 *)
PROG
(PARI) {prdex(n)=local(s, fac); s=1; fac=factor(n); for(k=1, matsize(fac)[1], s=s*fac[k, 2]); return(s)} {hp(m)=local(rec); rec=0; for(n=1, m, if(prdex(n)>rec, rec=prdex(n); print1(n", ")))}
KEYWORD
nonn,nice,easy
EXTENSIONS
Hardy and Subbarao give an extensive table.
Corrected and extended by Jason Earls, Jul 10 2003
STATUS
approved
a(n) = A005361(n) * A034444(n).
+20
13
1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 4, 8, 2, 8, 2, 8, 4, 4, 2, 12, 4, 4, 6, 8, 2, 8, 2, 10, 4, 4, 4, 16, 2, 4, 4, 12, 2, 8, 2, 8, 8, 4, 2, 16, 4, 8, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 8, 12, 4, 8, 2, 8, 4, 8, 2, 24, 2, 4, 8, 8, 4, 8, 2, 16, 8, 4, 2, 16, 4, 4, 4, 12, 2, 16, 4, 8, 4, 4, 4, 20, 2, 8, 8, 16
OFFSET
1,2
COMMENTS
Conjecture: Let k be some fixed integer and a_k(n) = A005361(n) * k^A001221(n) for n > 0 with 0^0 = 1. Then a_k(n) is multiplicative with a_k(p^e) = k*e for prime p and e > 0. For k = 0 see A000007 (offset 1), for k = 1 see A005361, for k = 2 see this sequence, for k = 3 see A226602 (offset 1), and for k = 4 see A322328.
Dirichlet inverse b(n) [= A355837(n)] is multiplicative with b(p^e) = 2 * (e mod 2) * (-1)^((e+1)/2) for prime p and e > 0.
FORMULA
Multiplicative with a(p^e) = 2*e for prime p and e > 0.
Dirichlet g. f.: (zeta(s))^2 * zeta(2*s) / zeta(4*s).
Equals Dirichlet convolution of A000005 and A227291.
Sum_{k=1..n} a(k) ~ 15*(log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 - 360*zeta'(4)/Pi^4) * n / Pi^2 + 6*zeta(1/2)^2 * sqrt(n) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 20 2020
a(n) = A005361(n^2) = A286324(n^2). - Amiram Eldar, Dec 09 2023
MATHEMATICA
a[n_] := If[n==1, 1, Module[{f = FactorInteger[n]}, 2^Length[f] * Times@@f[[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 03 2018 *)
PROG
(PARI) a(n) = my(f=factor(n)); vecprod(f[, 2])*2^omega(n); \\ Michel Marcus, Dec 04 2018
(PARI) A322327(n) = factorback(apply(e -> e+e, factor(n)[, 2])); \\ Antti Karttunen, Jul 18 2022
(Python)
from math import prod
from sympy import factorint
def A322327(n): return prod(e<<1 for e in factorint(n).values()) # Chai Wah Wu, Dec 26 2022
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Dec 03 2018
EXTENSIONS
Data section extended up to a(100) by Antti Karttunen, Jul 18 2022
STATUS
approved
a(n) = A005361(A283477(n)).
+20
10
1, 1, 1, 2, 1, 2, 4, 6, 1, 2, 4, 6, 8, 12, 18, 24, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 32, 48, 72, 96, 108, 144, 192, 240, 162, 216, 288, 360, 384, 480, 600, 720, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 32, 48, 72, 96, 108, 144, 192, 240, 162, 216, 288, 360, 384, 480
OFFSET
0,4
COMMENTS
a(n) is the product of elements of the multiset that covers an initial interval of positive integers with multiplicities equal to the parts of the n-th composition in standard order (graded reverse-lexicographic, A066099). This composition is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. For example, the 13th composition is (1,2,1) giving the multiset {1,2,2,3} with product 12, so a(13) = 12. - Gus Wiseman, Apr 26 2020
FORMULA
a(n) = A005361(A283477(n)).
a(n) = A003963(A057335(n)). - Gus Wiseman, Apr 26 2020
a(n) = A284005(A053645(n)) for n > 0 with a(0) = 1. - Mikhail Kurkov, Jun 05 2021 [verification needed]
MATHEMATICA
Table[Times @@ FactorInteger[#][[All, -1]] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]]], {n, 0, 93}] (* Michael De Vlieger, Mar 18 2017 *)
PROG
(PARI)
A005361(n) = factorback(factor(n)[, 2]); \\ From A005361
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
(Scheme) (define (A284001 n) (A005361 (A283477 n)))
CROSSREFS
Row products of A095684.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Weighted sum is A029931.
- Necklaces are A065609.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon words are A275692.
- Distinct parts are counted by A334028.
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Mar 18 2017
STATUS
approved
a(n) = A005361(n) * 4^A001221(n) for n > 0.
+20
10
1, 4, 4, 8, 4, 16, 4, 12, 8, 16, 4, 32, 4, 16, 16, 16, 4, 32, 4, 32, 16, 16, 4, 48, 8, 16, 12, 32, 4, 64, 4, 20, 16, 16, 16, 64, 4, 16, 16, 48, 4, 64, 4, 32, 32, 16, 4, 64, 8, 32, 16, 32, 4, 48, 16, 48, 16, 16, 4, 128, 4, 16, 32, 24, 16, 64, 4, 32, 16, 64, 4
OFFSET
1,2
COMMENTS
Let k be some fixed integer and a_k(n) = A005361(n) * k^A001221(n) for n > 0 with 0^0 = 1. Then a_k(n) is multiplicative with a_k(p^e) = k*e for prime p and e > 0. For k = 0 see A000007 (offset 1), for k = 1 see A005361, for k = 2 see A322327, for k = 3 see A226602 (offset 1), and for k = 4 see this sequence.
LINKS
FORMULA
Multiplicative with a(p^e) = 4*e for prime p and e > 0.
Dirichlet g.f.: (zeta(s))^4 / (zeta(2*s))^2.
Dirichlet inverse is b(n) = a(n) * A008836(n) for n > 0, and b(n) is multiplicative with b(p^e) = 4*e*(-1)^e for prime p and e > 0.
Equals Dirichlet convolution of A034444 with itself.
Equals Dirichlet convolution of A000005 with abs(A007427).
MAPLE
f:= n -> mul(4*t[2], t=ifactors(n)[2]):
map(f, [$1..100]); # Robert Israel, Dec 07 2018
MATHEMATICA
a[n_] := If[n==1, 1, Module[{f = FactorInteger[n]}, 4^Length[f] * Times@@f[[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 03 2018 *)
PROG
(PARI) a(n) = my(f=factor(n)); vecprod(f[, 2])*4^omega(n); \\ Michel Marcus, Dec 04 2018
(Python)
from math import prod
from sympy import factorint
def A322328(n): return prod(e<<2 for e in factorint(n).values()) # Chai Wah Wu, Dec 24 2022
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Dec 03 2018
STATUS
approved
Numbers that are the smallest number with product of prime exponents k for some k. Sorted positions of first appearances in A005361, unsorted version A085629.
+20
10
1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1152, 1296, 1728, 2048, 2592, 3456, 5184, 7776, 8192, 10368, 13824, 15552, 18432, 20736, 31104, 41472, 55296, 62208, 73728, 86400, 108000, 129600, 131072, 165888, 194400, 216000, 221184, 259200, 279936, 324000
OFFSET
1,2
COMMENTS
All terms are highly powerful (A005934), but that sequence looks only at first appearances that reach a record, and is missing 1152, 2048, 8192, etc.
EXAMPLE
The prime exponents of 86400 are (7,3,2), and this is the first case of product 42, so 86400 is in the sequence.
MATHEMATICA
nn=1000;
d=Table[Times@@Last/@FactorInteger[n], {n, nn}];
Select[Range[nn], !MemberQ[Take[d, #-1], d[[#]]]&]
lps[fct_] := Module[{nf = Length[fct]}, Times @@ (Prime[Range[nf]]^Reverse[fct])]; lps[{1}] = 1; q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, (n == 1 || AllTrue[e, # > 1 &]) && n == Min[lps /@ f[Times @@ e]]]; Select[Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {_, _}][[;; , 2]], q] (* Amiram Eldar, Sep 29 2024, using the function f by T. D. Noe at A162247 *)
CROSSREFS
These are the positions of first appearances in A005361, counted by A266477.
This is the sorted version of A085629.
The version for shadows instead of exponents is A353397, firsts in A353394.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices, counted by A339095.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime exponents, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
Subsequence of A181800.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2022
STATUS
approved
Index of the first of two successive 2's in A005361.
+20
4
44, 49, 75, 98, 116, 147, 171, 244, 260, 275, 315, 332, 363, 387, 475, 476, 507, 524, 531, 548, 549, 603, 604, 636, 692, 724, 725, 747, 764, 774, 819, 844, 845, 846, 867, 908, 924, 931, 963, 1035, 1075, 1083, 1179, 1196, 1251, 1274, 1275, 1324, 1340, 1395
OFFSET
1,1
COMMENTS
Numbers such that bigomega(n) - omega(n) = 1 and bigomega(n+1) - omega(n+1) = 1, where bigomega(n) is the number of primes dividing n (counted with repetition) and omega(n) is the number of distinct primes dividing n. - Michel Lagneau, Dec 17 2011
Elements of A060687 whose successor is also in A060687. - Emmanuel Vantieghem, Mar 05 2017
This sequence has 3548 terms up to 10^5, 35340 up to 10^6, 353147 up to 10^7, and 3531738 up to 10^8, suggesting a natural density around 0.0353.... - Charles R Greathouse IV, Mar 06 2017
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Indranil Ghosh)
MATHEMATICA
Select[Range[1400], PrimeOmega[#]-PrimeNu[#] == 1 && PrimeOmega[#+1] - PrimeNu[#+1] == 1 &] (* Indranil Ghosh, Mar 05 2017 *)
SequencePosition[Table[PrimeOmega[n]-PrimeNu[n], {n, 1500}], {1, 1}][[;; , 1]] (* Harvey P. Dale, Jul 17 2024 *)
PROG
(PARI) isok(n) = (bigomega(n)-omega(n) == 1) && (bigomega(n+1)-omega(n+1) == 1); \\ Michel Marcus, Mar 05 2017
(PARI) is(n)=factorback(factor(n)[, 2])==2 && factorback(factor(n+1)[, 2])==2 \\ Charles R Greathouse IV, Mar 06 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
Product of exponents of prime factorization of n by prime signature: A005361(A025487).
+20
3
1, 1, 2, 1, 3, 2, 4, 3, 1, 5, 4, 4, 2, 6, 6, 5, 3, 7, 8, 4, 6, 1, 9, 4, 8, 10, 6, 7, 2, 12, 5, 9, 12, 8, 8, 3, 15, 8, 6, 10, 9, 14, 4, 16, 10, 9, 4, 18, 12, 7, 11, 12, 16, 1, 6, 20, 12, 10, 5, 21, 16, 8, 12, 15, 18, 2, 8, 24, 18, 14, 11, 8, 16, 6, 24, 20, 9, 9, 25, 13, 18, 20, 3
OFFSET
1,3
LINKS
PROG
(PARI) lista() = {v = readvec("b025487.txt"); for (i=1, #v, f = factor(v[i]); print1(prod(k=1, #f~, f[k, 2]), ", "); ); } \\ Michel Marcus, Nov 02 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Nov 15 1999
EXTENSIONS
Offset updated by Matthew Vandermast, Nov 08 2008
STATUS
approved
a(n) = one more than the number of iterations of A005361 needed to reach 1 from the starting value n.
+20
2
1, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 2, 2, 2, 3, 2, 2
OFFSET
1,2
FORMULA
a(1) = 1, and for n > 1, a(n) = 1 + a(A005361(n)).
EXAMPLE
For n = 2 = 2^1, A005361(2) = 1, so we reach 1 in one step, and thus a(2) = 1+1 = 2.
For n = 4 = 2^2, A005361(4) = 2; A005361(2) = 1, so we reach 1 in two steps, and thus a(4) = 2+1 = 3.
For n = 6 = 2^1 * 3^1, A005361(6) = 1*1 = 1, so we reach 1 in one step, and thus a(6) = 1+1 = 2.
For n = 64 = 2^6, A005361(64) = 6, thus a(64) = 1 + a(6) = 3.
For n = 10! = 3628800 = 2^8 * 3^4 * 5^2 * 7*1, A005361(3628800) = 64, thus a(3628800) = 1 + a(64) = 4.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] expr[x_] := Apply[Times, ep[x]] Table[Length[FixedPointList[expr, w]]-1, {w, 2, 128}]
(* Second program: *)
Table[Length@ NestWhileList[Apply[Times, FactorInteger[#][[All, -1]]] &, n, # != 1 &], {n, 105}] (* Michael De Vlieger, Jul 29 2017 *)
PROG
(PARI)
A005361(n) = factorback(factor(n)[, 2]); \\ This function from Charles R Greathouse IV, Nov 07 2014
A082091(n) = if(1==n, 1, 1+A082091(A005361(n))); \\ Antti Karttunen, Jul 28 2017
(PARI) first(n) = my(v = vector(n)); v[1] = 1; for(i=2, n, v[i] = v[factorback(factor(i)[, 2])] + 1); v \\ David A. Corneth, Jul 28 2017
(Scheme) (define (A082091 n) (if (= 1 n) n (+ 1 (A082091 (A005361 n))))) ;; Antti Karttunen, Jul 28 2017
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 09 2003
EXTENSIONS
Term a(1)=1 prepended, Name and Example sections edited by Antti Karttunen, Jul 28 2017
STATUS
approved
First position of a plateau of length n in the product-of-exponents function A005361.
+20
2
2, 4, 843, 74848, 671345, 8870024
OFFSET
2,1
COMMENTS
The smallest index k such that A005361(k+1) = A005361(k+2) = ... = A005361(k+n).
a(8) is conjectured to be 1770019255373287038727484868192109228823.
LINKS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Nov 20 2012
STATUS
approved
Each term a(n) satisfies four properties: 1, divisible by all prime factors of n; 2, divisible by only the prime factors of n; 3, not equal to any of the terms a(1), a(2), ... a(n-1); 4, smallest number satisfying 1-3 if A005361(n) is even, or second smallest number satisfying 1-3 if A005361(n) is odd.
+20
2
1, 4, 9, 2, 25, 12, 49, 16, 3, 20, 121, 6, 169, 28, 45, 8, 289, 18, 361, 10, 63, 44, 529, 36, 5, 52, 81, 14, 841, 60, 961, 64, 99, 68, 175, 24, 1369, 76, 117, 50, 1681, 84, 1849, 22, 15, 92, 2209, 48, 7, 40, 153, 26, 2809, 72, 275, 98, 171, 116, 3481, 30, 3721, 124, 21, 32
OFFSET
1,2
COMMENTS
This sequence is permutation of the positive integers.
The prime p occurs at n = p^2.
Multiples of a number x have density 1/x.
Conjecture: this permutation of positive integers is self-inverse. Compare with A358971. The principal distinction between this sequence and A358971 is that fixed points aside from A358971(1) = 1 are explicitly ruled out in the latter. - Michael De Vlieger, Dec 10 2022
REFERENCES
Brad Klee, Posting to Sequence Fans Mailing List, Dec 21, 2014.
LINKS
Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20.
Michael De Vlieger, Log log scatterplot of a(n) <= 12000, n = 1..2^10 showing primes in red, other prime powers (in A246547) in gold, squarefree composites (in A120944) in green, numbers neither squarefree nor prime power (in A120706) in blue and magenta. The terms in magenta are products of composite prime powers (in A286708).
Michael De Vlieger, Log log scatterplot of a(n) <= 2^14, n = 1..2^14, showing a(n) such that rad(n) = 6 in red, and A358971(n) such that rad(n) = 6 in blue for comparison. This is an example of a self-inverse relation among terms a(n) in A003586.
Michael De Vlieger, Log log scatterplot of a(n) <= 80000, n = 1..2^14, showing a(n) in tiny black points if a(n) = A358971(n), else a(n) in red, and A358971(n) in blue.
MAPLE
A253288div := proc(a, n)
local npr, d, apr ;
npr := numtheory[factorset](n) ;
for d in npr do
if modp(a, d) <> 0 then
return false;
end if;
end do:
apr := numtheory[factorset](a) ;
if apr minus npr = {} then
true;
else
false;
end if;
end proc:
A253288 := proc(n)
option remember;
local a, i, prev, act, ev ;
if n =1 then
1;
else
act := 1 ;
if type(A005361(n), 'even') then
ev := true;
else
ev := false;
end if;
for a from 1 do
prev := false;
for i from 1 to n-1 do
if procname(i) = a then
prev := true;
break;
end if;
end do:
if not prev then
if A253288div(a, n) then
if ev or act > 1 then
return a;
else
act := act+1 ;
end if;
end if;
end if;
end do:
end if;
end proc:
seq(A253288(n), n=1..80) ; # R. J. Mathar, Jan 22 2015
MATHEMATICA
nn = 1000; c[_] = False; q[_] = 1; f[n_] := f[n] = Map[Times @@ # &, Transpose@ FactorInteger[n]]; a[1] = 1; c[1] = True; u = 2; Do[Which[PrimeQ[n], k = n^2, PrimeQ@ Sqrt[n], k = Sqrt[n], SquareFreeQ[n], k = First@ f[n]; m = q[k]; While[Nand[! c[k m], k m != n, Divisible[k, First@ f[m]]], m++]; While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]; k *= m, True, t = 0; Set[{k, s}, {First[#], 1 + Boole@ OddQ@ Last[#]} &[f[n]]]; m = q[k]; Until[t == s, If[m > q[k], m++]; While[Nand[! c[k m], Divisible[k, First@f[m]]], m++]; t++]; If[s == 1, While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]]; k *= m]; Set[{a[n], c[k]}, {k, True}]; If[k == u, While[c[u], u++]], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Dec 10 2022 *)
CROSSREFS
Cf. A005361 (Product of exponents of prime factorization of n), A358971.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 29 2014
EXTENSIONS
Terms beyond 361 from R. J. Mathar, Jan 22 2015
STATUS
approved

Search completed in 0.126 seconds