[go: up one dir, main page]

login
Search: a005329 -id:a005329
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerator of partial sums of A005329/A006125.
+20
3
1, 5, 43, 709, 23003, 1481957, 190305691, 48796386661, 25003673060507, 25613941912987493, 52467767892904362139, 214929296497738201165669, 1760788099067877263041671323, 28849467307107603960961499533157
OFFSET
0,2
COMMENTS
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. The probability of having won before n+1 tails (that is, winning by flipping n+1 or fewer heads in a row) is a(n)/A006125(n). The probability of winning for the first time after n tails (that is, by flipping n+1 heads in a row) is A005329(n)/A006125(n).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..80
Johann Cigler, Hankel determinants of backward shifts of powers of q, arXiv:2407.05768 [math.CO], 2024. See p. 4.
FORMULA
a(n) = numerator(Sum_{k=0..n} A005329(k)/A006125(k)).
a(n) = a(n-1) * 2^(n+1) + A005329(n).
EXAMPLE
a(3) = 43 because 1/2 + 1/8 + 3/64 = 43/64, or because a(2) * 2^(2+1) + A005329(2) = 5 * 8 + 3 = 43.
MATHEMATICA
Nest[Append[#1, #1[[-1]]*2^(#2 + 1) + Product[2^i - 1, {i, #2}]] & @@ {#, Length[#]} &, {1}, 13] (* Michael De Vlieger, Jul 15 2024 *)
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Joshua Zucker, Dec 14 2005
STATUS
approved
Inverse binomial transform of A005329.
+20
2
1, 0, 2, 14, 246, 8374, 560950, 74018118, 19314751526, 10004153405174, 10313935405968726, 21205201672407811750, 87047013055579706265862, 713958711370466820900197334, 11705348549229324549016264190006
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * 2^(n*(n+1)/2), where c = A048651 = 0.2887880950866... . - Vaclav Kotesovec, Nov 21 2015
MATHEMATICA
Table[Sum[(-1)^(n+k) Binomial[n, k] QFactorial[k, 2], {k, 0, n}], {n, 0, 15}] (* Vladimir Reshetnikov, Nov 20 2015 *)
CROSSREFS
Cf. A075272.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 05 2008
STATUS
approved
Normalized values of the Fabius function: 2^binomial(n-1, 2) * (2*n)! * A005329(n) * F(1/2^n).
+20
0
2, 1, 5, 105, 7007, 1298745, 619247475, 723733375365, 2006532782969715, 12889909959143502285, 188494585656727188486375, 6188497678605937441851529425, 451101946262511157576785806552415, 72341127537387548941434093006996374625, 25326487488712595887856341442148826764706875
OFFSET
0,1
COMMENTS
The Fabius function F(x) is the smooth monotone increasing function on [0, 1] satisfying F(0) = 0, F(1) = 1, F'(x) = 2*F(2*x) for 0 < x < 1/2, F'(x) = 2*F(2*(1-x)) for 1/2 < x < 1. It is infinitely differentiable at every point in the interval, but is nowhere analytic. It assumes rational values at dyadic rationals.
Comment from Vladimir Reshetnikov, Jan 25 2017: I just realized that I do not have a rigorous proof that all terms are integers. Could somebody suggest a proof? I would also be very interested to learn the asymptotics of this sequence.
Juan Arias de Reyna proved that all terms are indeed integers. - Vladimir Reshetnikov, Feb 28 2017
REFERENCES
Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.
LINKS
Juan Arias de Reyna, On the arithmetic of Fabius function, arXiv:1702.06487 [math.NT], 2017.
J. Fabius, A probabilistic example of a nowhere analytic C^infty-function, Probability Theory and Related Fields, June 1966, Volume 5, Issue 2, pp. 173-174.
Jan Kristian Haugland, Evaluating the Fabius function, arXiv:1609.07999 [math.GM], 23 Sep 2016.
Wikipedia, Fabius function
FORMULA
a(n) = 2^binomial(n-1, 2) * (2*n)! * A005329(n) * A272755(n) / A272757(n).
MATHEMATICA
c[0] = 1; c[n_] := c[n] = Sum[(-1)^k c[n - k]/(2 k + 1)!, {k, 1, n}] / (4^n - 1); Table[2^(1 - 2 n) (2 n)! QFactorial[n, 2] Sum[c[k] (-1)^k/(n - 2 k)!, {k, 0, n/2}], {n, 0, 15}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
a(n) = 2^(n*(n-1)/2).
(Formerly M1897)
+10
354
1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
OFFSET
0,3
COMMENTS
Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From N. J. A. Sloane, Oct 08 2012
Anders Björner and Richard P. Stanley, A combinatorial miscellany, 2010.
Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
Taylor Brysiewicz and Fulvio Gesmundo, The Degree of Stiefel Manifolds, arXiv:1909.10085 [math.AG], 2019.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Mihai Ciucu, Perfect matchings of cellular graphs, J. Algebraic Combin., 5 (1996) 87-103.
Mihai Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97.
Thierry de la Rue and Élise Janvresse, Pavages aléatoires par touillage de dominos, Images des Mathématiques, CNRS, 2023. In French.
Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part I, Journal of Algebraic Combinatorics 1-2, 111-132 (1992).
Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part II, Journal of Algebraic Combinatorics 1-3, 219-234 (1992).
Sen-Peng Eu and Tung-Shan Fu, A simple proof of the Aztec diamond theorem, arXiv:math/0412041 [math.CO], 2004.
D. Grensing, I. Carlsen, and H.-Chr. Zapp, Some exact results for the dimer problem on plane lattices with non-standard boundaries, Phil. Mag. A, 41:5 (1980), 777-781.
Harald Helfgott and Ira M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
William Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
Eric H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoretical Computer Science, Vol. 319, No. 1-3 (2004), pp. 29-57, arXiv preprint, arXiv:math/0304090 [math.CO], 2003.
C. L. Mallows & N. J. A. Sloane, Emails, May 1991
W. H. Mills, David P. Robbins, and Howard Rumsey, Jr., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359.
Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
James Propp, Enumeration of matchings: problems and progress, arXiv:math/9904150 [math.CO], 1999.
James Propp, Lessons I learned from Richard Stanley, arXiv preprint [math.CO], 2015.
James Propp and R. P. Stanley, Domino tilings with barriers, arXiv:math/9801067 [math.CO], 1998.
Steven S. Skiena, Generating graphs.
David E. Speyer, Perfect matchings and the octahedron recurrence, Journal of Algebraic Combinatorics, Vol. 25, No. 3 (2007), pp. 309-348, arXiv preprint, arXiv:math/0402452 [math.CO], 2004.
Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
Eric Weisstein's World of Mathematics, Connected Graph.
Eric Weisstein's World of Mathematics, Labeled Graph.
Eric Weisstein's World of Mathematics, Symmetric Matrix.
Doron Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954.
FORMULA
Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024
EXAMPLE
From Gus Wiseman, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
{} {} {}
{11} {11}
{12}
{22}
{11,12}
{11,22}
{12,22}
{11,12,22}
(End)
MATHEMATICA
Join[{1}, 2^Accumulate[Range[0, 20]]] (* Harvey P. Dale, May 09 2013 *)
Table[2^(n (n - 1) / 2), {n, 0, 20}] (* Vincenzo Librandi, Jul 03 2019 *)
Table[2^Binomial[n, 2], {n, 0, 15}] (* Eric W. Weisstein, Jan 03 2021 *)
2^Binomial[Range[0, 15], 2] (* Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{0, 1}, {n, n}], _?SymmetricMatrixQ], {n, 5}], 1] (* Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{-1, 1}, {n, n}], _?PositiveDefiniteMatrixQ], 1], {n, 4}] (* Eric W. Weisstein, Jan 03 2021 *)
PROG
(PARI) a(n)=1<<binomial(n, 2) \\ Charles R Greathouse IV, Jun 15 2011
(Maxima) A006125(n):=2^(n*(n-1)/2)$ makelist(A006125(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
(Magma) [2^(n*(n-1) div 2): n in [0..20]]; // Vincenzo Librandi, Jul 03 2019
(Haskell) [2^(n*(n-1) `div` 2) | n <- [0..20]] -- José E. Solsona, Feb 05 2023
(Python)
def A006125(n): return 1<<(n*(n-1)>>1) # Chai Wah Wu, Nov 09 2023
CROSSREFS
Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Vladeta Jovovic, Apr 09 2000
STATUS
approved
Decimal expansion of Product_{k >= 1} (1 - 1/2^k).
+10
99
2, 8, 8, 7, 8, 8, 0, 9, 5, 0, 8, 6, 6, 0, 2, 4, 2, 1, 2, 7, 8, 8, 9, 9, 7, 2, 1, 9, 2, 9, 2, 3, 0, 7, 8, 0, 0, 8, 8, 9, 1, 1, 9, 0, 4, 8, 4, 0, 6, 8, 5, 7, 8, 4, 1, 1, 4, 7, 4, 1, 0, 6, 6, 1, 8, 4, 9, 0, 2, 2, 4, 0, 9, 0, 6, 8, 4, 7, 0, 1, 2, 5, 7, 0, 2, 4, 2, 8, 4, 3, 1, 9, 3, 3, 4, 8, 0, 7, 8, 2
OFFSET
0,1
COMMENTS
This is the limiting probability that a large random binary matrix is nonsingular (cf. A002884).
This constant is very close to 2^(13/24) * sqrt(Pi/log(2)) / exp(Pi^2/(6*log(2))) = 0.288788095086602421278899775042039398383022429351580356839... - Vaclav Kotesovec, Aug 21 2018
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
LINKS
Steven R. Finch, Digital Search Tree Constants. [Broken link]
Steven R. Finch, Digital Search Tree Constants. [From the Wayback machine]
Marvin Geiselhart, Ahmed Elkelesh, Moustafa Ebada, Sebastian Cammerer, and Stephan ten Brink, On the Automorphism Group of Polar Codes, arXiv:2101.09679 [cs.IT], 2021.
Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Victor S. Miller, Counting Matrices that are Squares, arXiv:1606.09299 [math.GR], 2016.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
V. Arvind Rameshwar, Shreyas Jain, and Navin Kashyap, Sampling-Based Estimates of the Sizes of Constrained Subcodes of Reed-Muller Codes, arXiv:2309.08907 [cs.IT], 2023.
László Tóth, Alternating sums concerning multiplicative arithmetic functions, arXiv preprint arXiv:1608.00795 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Infinite Product.
Eric Weisstein's World of Mathematics, Tree Searching.
Wanchen Zhang, Yu Ning, Fei Shi, and Xiande Zhang, Extremal Maximal Entanglement, arXiv:2411.12208 [quant-ph], 2024. See p. 15.
FORMULA
exp(-Sum_{k>0} sigma_1(k)/k*2^(-k)) = exp(-Sum_{k>0} A000203(k)/k*2^(-k)). - Hieronymus Fischer, Jul 28 2007
Lim inf Product_{k=0..floor(log_2(n))} floor(n/2^k)*2^k/n for n->oo. - Hieronymus Fischer, Aug 13 2007
Lim inf A098844(n)/n^(1+floor(log_2(n)))*2^(1/2*(1+floor(log_2(n)))*floor(log_2(n))) for n->oo. - Hieronymus Fischer, Aug 13 2007
Lim inf A098844(n)/n^(1+floor(log_2(n)))*2^A000217(floor(log_2(n)) for n->oo. - Hieronymus Fischer, Aug 13 2007
Lim inf A098844(n)/(n+1)^((1+log_2(n+1))/2) for n->oo. - Hieronymus Fischer, Aug 13 2007
(1/2)*exp(-Sum_{n>0} 2^(-n)*Sum_{k|n} 1/(k*2^k)). - Hieronymus Fischer, Aug 13 2007
Limit of A177510(n)/A000079(n-1) as n->infinity (conjecture). - Mats Granvik, Mar 27 2011
Product_{k >= 1} (1-1/2^k) = (1/2; 1/2)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
exp(Sum_{n>=1}(1/n/(1 - 2^n))) (according to Mathematica). - Mats Granvik, Sep 07 2016
(Sum_{k>0} (4^k-1)/(Product_{i=1..k} ((4^i-1)*(2*4^i-1))))*2 = 2/7 + 2/(3*7*31) + 2/(3*7*15*31*127)+2/(3*7*15*31*63*127*511) + ... (conjecture). - Werner Schulte, Dec 22 2016
Equals Sum_{k=-oo..oo} (-1)^k/2^((3*k+1)*k/2) (by Euler's pentagonal number theorem). - Amiram Eldar, Aug 13 2020
From Peter Bala, Dec 15 2020: (Start)
Constant C = Sum_{n >= 0} (-1)^n/( Product_{k = 1..n} (2^k - 1) ). The above conjectural result by Schulte follows by adding terms of this series in pairs.
C = (1/2)*Sum_{n >= 0} (-1/2)^n/( Product_{k = 1..n} (2^k - 1) ).
C = (3/8)*Sum_{n >= 0} (-1/4)^n/( Product_{k = 1..n} (2^k - 1) ).
1/C = Sum_{n >= 0} 2^(n*(n-1)/2)/( Product_{k = 1..n} (2^k - 1) ).
C = 1 - Sum_{n >= 0} (1/2)^(n+1)*Product_{k = 1..n} (1 - 1/2^k).
This latter identity generalizes as:
C = Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*C = 1 - Sum_{n >= 0} (1/8)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*C = 6 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*15*C = 91 - Sum_{n >= 0} (1/32)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
and so on, where the sequence [1, 0, 1, 6, 91, ...] is A005327.
(End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(2)) * exp(log(2)/24 - Pi^2/(6*log(2))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A005329(n).
Equals exp(-A335764). (End)
Equals 1/A065446. - Hugo Pfoertner, Nov 23 2024
EXAMPLE
(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...
MATHEMATICA
RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)
PROG
(PARI) default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
KEYWORD
nonn,cons,changed
EXTENSIONS
Corrected by Hieronymus Fischer, Jul 28 2007
STATUS
approved
Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).
(Formerly M4302 N1798)
+10
89
1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000
OFFSET
0,3
COMMENTS
Also number of bases for GF(2^n) over GF(2).
Also (apparently) number of n X n matrices over GF(2) having permanent = 1. - Hugo Pfoertner, Nov 14 2003
The previous comment is true because over GF(2) permanents and determinants are the same. - Joerg Arndt, Mar 07 2008
The number of automorphisms of (Z_2)^n (the direct product of n copies of Z_2). - Peter Eastwood, Apr 06 2015
Note that n! divides a(n) since the subgroup of GL(n,2) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). - Jianing Song, Oct 29 2022
REFERENCES
Carter, Roger W. Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28. John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
Horadam, K. J., Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..57 (first 30 terms from T. D. Noe)
Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Zong Duo Dai, Solomon W. Golomb, and Guang Gong, Generating all linear orthomorphisms without repetition, Discrete Math. 205 (1999), 47-55.
P. F. Duvall, Jr. and P. W. Harley, III, A note on counting matrices, SIAM J. Appl. Math., 20 (1971), 374-377.
N. Ilievska and D. Gligoroski, Error-Detecting Code Using Linear Quasigroups, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318.
A. Meyerowitz & N. J. A. Sloane, Correspondence 1979
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Volume 29, 2005 - Issue 1.
I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
FORMULA
a(n) = Product_{i=0..n-1} (2^n-2^i).
a(n) = 2^(n*(n-1)/2) * Product_{i=1..n} (2^i - 1).
a(n) = A203303(n+1)/A203303(n). - R. J. Mathar, Jan 06 2012
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)) for n > 2. - Seiichi Manyama, Oct 20 2016
a(n) ~ A048651 * 2^(n^2). - Vaclav Kotesovec, May 19 2020
a(n) = A006125(n) * A005329(n). - John Keith, Jun 30 2021
EXAMPLE
PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
MAPLE
# First program
A002884:= n-> product(2^n - 2^i, i=0..n-1);
seq(A002884(n), n = 0..12);
# Second program
A002884:= n-> 2^(n*(n-1)/2) * product( 2^i - 1, i=1..n);
seq(A002884(n), n=0..12);
MATHEMATICA
Table[Product[2^n-2^i, {i, 0, n-1}], {n, 0, 13}] (* Harvey P. Dale, Aug 07 2011 *)
Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
PROG
(PARI) a(n)=prod(i=2, n, 2^i-1)<<binomial(n, 2) \\ Charles R Greathouse IV, Jan 13 2012
(Magma) [1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
(SageMath) [product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved
Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.
+10
80
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
OFFSET
0,5
COMMENTS
Also number of distinct binary linear [n,k] codes.
Row sums give A006116.
Central terms are A006098.
T(n,k) is the number of subgroups of the Abelian group (C_2)^n that have order 2^k. - Geoffrey Critzer, Mar 28 2016
T(n,k) is the number of k-subspaces of the finite vector space GF(2)^n. - Jianing Song, Jan 31 2020
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Octavio A. Agustín-Aquino, Archimedes' quadrature of the parabola and minimal covers, arXiv:1602.05279 [math.CO], 2016.
J. A. de Azcarraga and J. A. Macfarlane, Group Theoretical Foundations of Fractional Supersymmetry arXiv:hep-th/9506177, 1995.
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
D. Slepian, A class of binary signaling alphabets, Bell System Tech. J. 35 (1956), 203-234.
D. Slepian, Some further theory of group codes, Bell System Tech. J. 39 1960 1219-1252.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
Eric W. Weisstein, q-Binomial Coefficient.
Wikipedia, q-binomial
FORMULA
G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006
For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019
T(n,k) = Sum_{j=0..k} qStirling2(n-j,n-k)*C(n,j) where qStirling2(n,k) is A139382. - Vladimir Kruchinin, Mar 04 2020
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1;
1, 127, 2667, 11811, 11811, 2667, 127, 1;
MAPLE
A005329 := proc(n)
mul( 2^i-1, i=1..n) ;
end proc:
A022166 := proc(n, m)
A005329(n)/A005329(n-m)/A005329(m) ;
end proc: # R. J. Mathar, Nov 14 2011
MATHEMATICA
Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
(* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, _] := KroneckerDelta[n, 0]; S[0, k_, _] := KroneckerDelta[0, k]; S[_, _, _] = 0;
T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
PROG
(PARI) T(n, k)=polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n) \\ Paul D. Hanna, Oct 28 2006
(PARI) qp = matpascal(9, 2);
for(n=1, #qp, for(k=1, n, print1(qp[n, k], ", "))) \\ Gerald McGarvey, Dec 05 2009
(PARI) {q=2; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018
(Sage) def T(n, k): return gaussian_binomial(n, k).subs(q=2) # Ralf Stephan, Mar 02 2014
(Magma) q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
CROSSREFS
Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3), A139382.
KEYWORD
nonn,tabl
STATUS
approved
Total number of self-dual binary codes of length 2n. Totally isotropic spaces of index n in symplectic geometry of dimension 2n.
+10
33
1, 3, 15, 135, 2295, 75735, 4922775, 635037975, 163204759575, 83724041661975, 85817142703524375, 175839325399521444375, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375
OFFSET
1,2
COMMENTS
These numbers appear in the second column of A155103. - Mats Granvik, Jan 20 2009
a(n) = n terms in the sequence (1, 2, 4, 8, 16, ...) dot n terms in the sequence (1, 1, 3, 15, 135). Example: a(5) = 2295 = (1, 2, 4, 8, 16) dot (1, 1, 3, 15, 135) = (1 + 2 + 12 + 120 + 2160). - Gary W. Adamson, Aug 02 2010
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 630.
LINKS
C. Bachoc and P. Gaborit, On extremal additive F_4 codes of length 10 to 18, J. Théorie Nombres Bordeaux, 12 (2000), 255-271.
Steven T. Dougherty and Esengül Saltürk, The neighbor graph of binary self-orthogonal codes, Adv. Math. Comm. (2024). See p. 6.
Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
FORMULA
a(n) = Product_{i=1..n-1} (2^i+1).
Letting a(0)=1, we have a(n) = Sum_{k=0..n-1} 2^k*a(k) for n>0. a(n) is asymptotic to c*sqrt(2)^(n^2-n) where c=2.384231029031371724149899288.... = A079555 = Product_{k>=1} (1 + 1/2^k). - Benoit Cloitre, Jan 25 2003
G.f.: Sum_{n>=1} 2^(n*(n-1)/2) * x^n/(Product_{k=0..n-1} (1-2^k*x)). - Paul D. Hanna, Sep 16 2009
a(n) = 2^(binomial(n,2) - 1)*(-1; 1/2)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
From Antti Karttunen, Apr 15 2017: (Start)
a(n) = A048675(A285101(n-1)).
a(n) = b(n-1), where b(0) = 1, and for n > 0, b(n) = b(n-1) + (2^n)*b(n-1).
a(n) = Sum_{i=1..A000124(n-1)} A053632(n-1,i-1)*(2^(i-1)) [where the indexing of both rows and columns of irregular table A053632(row,col) is considered to start from zero].
(End)
G.f. A(x) satisfies: A(x) = x * (1 + A(2*x)) / (1 - x). - Ilya Gutkovskiy, Jun 06 2020
Conjectural o.g.f. as a continued fraction of Stieltjes type (S-fraction):
1/(1 - 3*x/(1 - 2*x/(1 - 10*x/(1 - 12*x/(1 - 36*x/(1 - 56*x/(1 - 136*x/(1 - 240*x/(1 - ... - 2^(n-1)*(2^n + 1)*x/(1 - 2^n*(2^n - 1)*x/(1 - ... ))))))))))). - Peter Bala, Sep 27 2023
EXAMPLE
G.f. = x + 3*x^2 + 15*x^3 + 135*x^4 + 2295*x^5 + 75735*x^6 + 4922775*x^7 + ...
MAPLE
seq(mul(1 + 2^j, j = 1..n-1), n = 1..20); # G. C. Greubel, Jun 06 2020
MATHEMATICA
Table[Product[2^i+1, {i, n-1}], {n, 15}] (* or *) FoldList[Times, 1, 2^Range[15]+1] (* Harvey P. Dale, Nov 21 2011 *)
Table[QPochhammer[-2, 2, n - 1], {n, 15}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, 2^(m*(m-1)/2)*x^m/prod(k=0, m-1, 1-2^k*x+x*O(x^n))), n)} \\ Paul D. Hanna, Sep 16 2009
(PARI) {a(n) = if( n<1, 0 , prod(k=1, n-1, 2^k + 1))}; /* Michael Somos, Jan 28 2018 */
(PARI) {a(n) = sum(k=0, n-1, 2^(k*(k+1)/2) * prod(j=1, k, (2^(n-j) - 1) / (2^j - 1)))}; /* Michael Somos, Jan 28 2018 */
(Sage)
from ore_algebra import *
R.<x> = QQ['x']
A.<Qx> = OreAlgebra(R, 'Qx', q=2)
print((Qx - x - 1).to_list([0, 1], 10)) # Ralf Stephan, Apr 24 2014
(Sage)
from sage.combinat.q_analogues import q_pochhammer
[q_pochhammer(n-1, -2, 2) for n in (1..20)] # G. C. Greubel, Jun 06 2020
(Magma) [1] cat [&*[ 2^k+1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
(Python)
for n in range(2, 40, 2):
product = 1
for i in range(1, n//2-1 + 1):
product *= (2**i+1)
print(product)
# Nathan J. Russell, Mar 01 2016
(Python)
from math import prod
def A028362(n): return prod((1<<i)+1 for i in range(1, n)) # Chai Wah Wu, Jun 20 2022
(Scheme, with memoization-macro definec)
(define (A028362 n) (A028362off0 (- n 1)))
(definec (A028362off0 n) (if (zero? n) 1 (+ (A028362off0 (- n 1)) (* (expt 2 n) (A028362off0 (- n 1))))))
;; Antti Karttunen, Apr 15 2017
CROSSREFS
Cf. A155103. - Mats Granvik, Jan 20 2009
Cf. A005329, A006088. - Paul D. Hanna, Sep 16 2009
KEYWORD
nonn,easy,nice
STATUS
approved
Sum of Gaussian binomial coefficients [n,k] for q=2 and k=0..n.
(Formerly M1501)
+10
25
1, 2, 5, 16, 67, 374, 2825, 29212, 417199, 8283458, 229755605, 8933488744, 488176700923, 37558989808526, 4073773336877345, 623476476706836148, 134732283882873635911, 41128995468748254231002, 17741753171749626840952685, 10817161765507572862559462656
OFFSET
0,2
COMMENTS
Also number of distinct binary linear codes of length n and any dimension.
Equivalently, number of subgroups of the Abelian group (C_2)^n.
Let V_n be an n-dimensional vector space over a field with 2 elements. Let P(V_n) be the collection of all subspaces of V_n. Then a(n-1) is the number of times any given nonzero vector of V_n appears in P(V_n). - Geoffrey Critzer, Jun 05 2017
With V_n and P(V_n) as above, a(n) is also the cardinality of P(V_n). - Vaia Patta, Jun 25 2019
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
S. Hitzemann and W. Hochstattler, On the combinatorics of Galois numbers, Discr. Math. 310 (2010) 3551-3557, Galois Numbers G_{n}^(2).
Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
Vjekoslav Kovač and Hrvoje Šikić, Characterizations of democratic systems of translates on locally compact abelian groups, arXiv:1709.01747 [math.FA], 2017.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
D. Slepian, A class of binary signaling alphabets, Bell System Tech. J. 35 (1956), 203-234.
D. Slepian, Some further theory of group codes, Bell System Tech. J. 39 1960 1219-1252.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - 2^k*x). - Paul D. Hanna, Dec 06 2007
From Paul D. Hanna, Nov 29 2008: (Start)
Coefficients of the square of the q-exponential of x evaluated at q=2, where the q-exponential of x = Sum_{n>=0} x^n/F(n) and F(n) = Product{i=1..n} (q^i-1)/(q-1) is the q-factorial of n.
G.f.: (Sum_{k=0..n} x^n/F(n))^2 = Sum_{k=0..n} a(n)*x^n/F(n) where F(n) = A005329(n) = Product{i=1..n} (2^i - 1).
a(n) = Sum_{k=0..n} F(n)/(F(k)*F(n-k)) where F(n)=A005329(n) is the 2-factorial of n.
a(n) = Sum_{k=0..n} Product_{i=1..n-k} (2^(i+k) - 1)/(2^i - 1).
a(n) = Sum_{k=0..A033638(n)} A083906(n,k)*2^k. (End)
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2^k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) = 2*a(n-1) + (2^(n-1)-1)*a(n-2). [Hitzemann and Hochstattler]. - R. J. Mathar, Aug 21 2013
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2] / QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2] / QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - Vaclav Kotesovec, Aug 21 2013
EXAMPLE
O.g.f.: A(x) = 1/(1-x) + x/((1-x)*(1-2x)) + x^2/((1-x)*(1-2x)*(1-4x)) + x^3/((1-x)*(1-2x)*(1-4x)*(1-8x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,2,5,16,67,374,2825,29212,...] = BINOMIAL([1,1,2,6,26,158,1330,...]); see A135922;
[1,2,6,26,158,1330,15414,245578,...] = BINOMIAL([1,1,3,13,83,749,...]);
[1,3,13,83,749,9363,160877,...] = BINOMIAL^2([1,1,5,33,317,4361,...]);
[1,5,33,317,4361,82789,2148561,...] = BINOMIAL^4([1,1,9,97,1433,...]);
[1,9,97,1433,30545,902601,...] = BINOMIAL^8([1,1,17,321,7601,252833,...]);
etc.
MAPLE
gf:= m-> add(x^n/mul(1-2^k*x, k=0..n), n=0..m):
a:= n-> coeff(series(gf(n), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 24 2012
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 1,
2^m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 08 2021
MATHEMATICA
faq[n_, q_] = Product[(1-q^(1+k))/(1-q), {k, 0, n-1}]; qbin[n_, m_, q_] = faq[n, q]/(faq[m, q]*faq[n-m, q]); a[n_] := Sum[qbin[n, k, 2], {k, 0, n}]; a /@ Range[0, 19] (* Jean-François Alcover, Jul 21 2011 *)
Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(2^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
QP = QPochhammer; a[n_] := Sum[QP[2, 2, n]/(QP[2, 2, k]*QP[2, 2, n-k]), {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 23 2015 *)
Table[Sum[QBinomial[n, k, 2], {k, 0, n}], {n, 0, 19}] (* Ivan Neretin, Mar 28 2016 *)
PROG
(PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-2^j*x+x*O(x^n))), n) \\ Paul D. Hanna, Dec 06 2007
(PARI) a(n, q=2)=sum(k=0, n, prod(i=1, n-k, (q^(i+k)-1)/(q^i-1))) \\ Paul D. Hanna, Nov 29 2008
(Magma) I:=[1, 2]; [n le 2 select I[n] else 2*Self(n-1)+(2^(n-2)-1)*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 12 2014
CROSSREFS
Cf. A006516. Row sums of A022166.
Cf. A005329, A083906. - Paul D. Hanna, Nov 29 2008
KEYWORD
nonn,easy,nice
STATUS
approved
a(n) = Product_{i=1..n} (3^i - 1).
+10
22
1, 2, 16, 416, 33280, 8053760, 5863137280, 12816818094080, 84078326697164800, 1654829626053597593600, 97714379759212830706892800, 17309711516825516108403231948800
OFFSET
0,2
COMMENTS
2*(10)^m|a(n) where 4*m <= n <= 4*m+3 for m >= 1. - G. C. Greubel, Nov 20 2015
Given probability p = 1/3^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1-a(n)/A047656(n+1) is the probability that the outcome has occurred at or before the n-th iteration. The limiting ratio is 1-A100220 ~ 0.4398739. - Bob Selcoe, Mar 01 2016
LINKS
FORMULA
a(n) ~ c * 3^(n*(n+1)/2), where c = A100220 = Product_{k>=1} (1-1/3^k) = 0.560126077927948944969792243314140014379736333798... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 3^(binomial(n+1,2))*(1/3;1/3)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024023(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 3^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 3^k*x). - Ilya Gutkovskiy, May 22 2017
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A132324.
Sum_{n>=0} (-1)^n/a(n) = A100220. (End)
MAPLE
A027871 := proc(n)
mul( 3^i-1, i=1..n) ;
end proc:
seq(A027871(n), n=0..8) ; # R. J. Mathar, Jul 13 2017
MATHEMATICA
Table[Product[(3^k-1), {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 17 2015 *)
Abs@QPochhammer[3, 3, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
PROG
(PARI) a(n) = prod(i=1, n, 3^i-1); \\ Michel Marcus, Nov 21 2015
(Magma) [1] cat [&*[ 3^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
CROSSREFS
Cf. A005329 (q=2), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).
KEYWORD
nonn
STATUS
approved

Search completed in 0.036 seconds