[go: up one dir, main page]

login
Search: a002884 -id:a002884
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A002884(n) / A070731(n).
+20
1
1, 2, 3, 6, 12, 21, 42, 84, 147, 294
OFFSET
1,2
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), May 25 2003
EXTENSIONS
a(10) from Jinyuan Wang, Mar 02 2020
STATUS
approved
Triangular array read by rows: T(n,k) = A002884(k)*2^((n-k)(n-k-1)), n >= 0, 0 <= k <= n.
+20
1
1, 1, 1, 4, 1, 6, 64, 4, 6, 168, 4096, 64, 24, 168, 20160, 1048576, 4096, 384, 672, 20160, 9999360, 1073741824, 1048576, 24576, 10752, 80640, 9999360, 20158709760, 4398046511104, 1073741824, 6291456, 688128, 1290240, 39997440, 20158709760, 163849992929280
OFFSET
0,4
COMMENTS
For A,B in the set of n X n matrices over GF(2) let A ~ B iff A^j = B^k for some positive j,k. Then ~ is an equivalence relation. There is exactly one idempotent matrix in each equivalence class. Let E be an idempotent matrix of rank k. Then T(n,k) is the size of the class containing E.
The classes in the equivalence relation described above are called the torsion classes corresponding to the idempotent E. - Geoffrey Critzer, Oct 02 2022
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Encyclopedia of Mathematics, Periodic semigroup
EXAMPLE
Triangle begins:
1;
1, 1;
4, 1, 6;
64, 4, 6, 168;
4096, 64, 24, 168, 20160;
1048576, 4096, 384, 672, 20160, 9999360;
...
T(3,1)=4 because we have: { I = {{0, 0, 0}, {0, 0, 0}, {0, 0, 1}},
A= {{0, 0, 0}, {1, 0, 0}, {0, 0, 1}}, B= {{0, 1, 0}, {0, 0, 0}, {0, 0, 1}},
C= {{1, 1, 0}, {1, 1, 0}, {0, 0, 1}} } where I is idempotent of rank 1 and A^2=B^2=C^2=I.
MATHEMATICA
q = 2; nn = 7; Table[Table[Product[q^d - q^i, {i, 0, d - 1}] q^((n - d) (n - d - 1)), {d, 0, n}], {n, 0, nn}] // Grid
PROG
(PARI) \\ here b(n) is A002884(n).
b(n) = {prod(i=2, n, 2^i-1)<<binomial(n, 2)}
T(n, k) = {b(k)*2^((n-k)*(n-k-1))} \\ Andrew Howroyd, Nov 22 2021
CROSSREFS
Cf. A053763 (column k=0), A002884 (main diagonal).
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Nov 21 2021
STATUS
approved
Triangular array read by rows. T(n,k) = A002884(n)/A002884(n-k)*2^((n-k)(n-k-1)), n>=0, 0<=k<=n.
+20
0
1, 1, 1, 4, 6, 6, 64, 112, 168, 168, 4096, 7680, 13440, 20160, 20160, 1048576, 2031616, 3809280, 6666240, 9999360, 9999360, 1073741824, 2113929216, 4095737856, 7679508480, 13439139840, 20158709760, 20158709760, 4398046511104, 8727373545472, 17182016667648, 33290157293568, 62419044925440, 109233328619520, 163849992929280, 163849992929280
OFFSET
0,4
COMMENTS
Let ~ be the equivalence relation on the set of n X n matrices over GF(2) defined by A ~ B if and only if the dimension of the image of A^n is equal to the dimension of the image of B^n. Let A be a recurrent matrix (Cf A348622) of rank k. Then T(n,k) is the size of the equivalence class containing A.
FORMULA
T(n,k) = A002884(n)/A002884(n-k)*2^((n-k)(n-k-1)).
EXAMPLE
Triangle begins:
1,
1, 1,
4, 6, 6,
64, 112, 168, 168,
4096, 7680, 13440, 20160, 20160,
1048576, 2031616, 3809280, 6666240, 9999360, 9999360
MATHEMATICA
R[n_, d_] := Product[q^n - q^i, {i, 0, n - 1}]/Product[q^(n - d) - q^i, {i, 0, n - d - 1}]; Table[Table[R[n, d] q^((n - d) (n - d - 1)), {d, 0, n}], {n, 0, 10}] // Grid
CROSSREFS
Cf. A348622, A002884 (main diagonal), A053763 (column k=0).
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Nov 04 2021
STATUS
approved
a(n) = 2^(n*(n-1)/2).
(Formerly M1897)
+10
355
1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
OFFSET
0,3
COMMENTS
Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From N. J. A. Sloane, Oct 08 2012
Anders Björner and Richard P. Stanley, A combinatorial miscellany, 2010.
Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
Taylor Brysiewicz and Fulvio Gesmundo, The Degree of Stiefel Manifolds, arXiv:1909.10085 [math.AG], 2019.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Mihai Ciucu, Perfect matchings of cellular graphs, J. Algebraic Combin., 5 (1996) 87-103.
Mihai Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97.
Thierry de la Rue and Élise Janvresse, Pavages aléatoires par touillage de dominos, Images des Mathématiques, CNRS, 2023. In French.
Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part I, Journal of Algebraic Combinatorics 1-2, 111-132 (1992).
Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part II, Journal of Algebraic Combinatorics 1-3, 219-234 (1992).
Sen-Peng Eu and Tung-Shan Fu, A simple proof of the Aztec diamond theorem, arXiv:math/0412041 [math.CO], 2004.
D. Grensing, I. Carlsen, and H.-Chr. Zapp, Some exact results for the dimer problem on plane lattices with non-standard boundaries, Phil. Mag. A, 41:5 (1980), 777-781.
Harald Helfgott and Ira M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
William Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
Eric H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoretical Computer Science, Vol. 319, No. 1-3 (2004), pp. 29-57, arXiv preprint, arXiv:math/0304090 [math.CO], 2003.
C. L. Mallows & N. J. A. Sloane, Emails, May 1991
W. H. Mills, David P. Robbins, and Howard Rumsey, Jr., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359.
Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
James Propp, Enumeration of matchings: problems and progress, arXiv:math/9904150 [math.CO], 1999.
James Propp, Lessons I learned from Richard Stanley, arXiv preprint [math.CO], 2015.
James Propp and R. P. Stanley, Domino tilings with barriers, arXiv:math/9801067 [math.CO], 1998.
Steven S. Skiena, Generating graphs.
David E. Speyer, Perfect matchings and the octahedron recurrence, Journal of Algebraic Combinatorics, Vol. 25, No. 3 (2007), pp. 309-348, arXiv preprint, arXiv:math/0402452 [math.CO], 2004.
Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
Eric Weisstein's World of Mathematics, Connected Graph.
Eric Weisstein's World of Mathematics, Labeled Graph.
Eric Weisstein's World of Mathematics, Symmetric Matrix.
Doron Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954.
FORMULA
Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024
EXAMPLE
From Gus Wiseman, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
{} {} {}
{11} {11}
{12}
{22}
{11,12}
{11,22}
{12,22}
{11,12,22}
(End)
MATHEMATICA
Join[{1}, 2^Accumulate[Range[0, 20]]] (* Harvey P. Dale, May 09 2013 *)
Table[2^(n (n - 1) / 2), {n, 0, 20}] (* Vincenzo Librandi, Jul 03 2019 *)
Table[2^Binomial[n, 2], {n, 0, 15}] (* Eric W. Weisstein, Jan 03 2021 *)
2^Binomial[Range[0, 15], 2] (* Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{0, 1}, {n, n}], _?SymmetricMatrixQ], {n, 5}], 1] (* Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{-1, 1}, {n, n}], _?PositiveDefiniteMatrixQ], 1], {n, 4}] (* Eric W. Weisstein, Jan 03 2021 *)
PROG
(PARI) a(n)=1<<binomial(n, 2) \\ Charles R Greathouse IV, Jun 15 2011
(Maxima) A006125(n):=2^(n*(n-1)/2)$ makelist(A006125(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
(Magma) [2^(n*(n-1) div 2): n in [0..20]]; // Vincenzo Librandi, Jul 03 2019
(Haskell) [2^(n*(n-1) `div` 2) | n <- [0..20]] -- José E. Solsona, Feb 05 2023
(Python)
def A006125(n): return 1<<(n*(n-1)>>1) # Chai Wah Wu, Nov 09 2023
CROSSREFS
Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Vladeta Jovovic, Apr 09 2000
STATUS
approved
Decimal expansion of Product_{k >= 1} (1 - 1/2^k).
+10
99
2, 8, 8, 7, 8, 8, 0, 9, 5, 0, 8, 6, 6, 0, 2, 4, 2, 1, 2, 7, 8, 8, 9, 9, 7, 2, 1, 9, 2, 9, 2, 3, 0, 7, 8, 0, 0, 8, 8, 9, 1, 1, 9, 0, 4, 8, 4, 0, 6, 8, 5, 7, 8, 4, 1, 1, 4, 7, 4, 1, 0, 6, 6, 1, 8, 4, 9, 0, 2, 2, 4, 0, 9, 0, 6, 8, 4, 7, 0, 1, 2, 5, 7, 0, 2, 4, 2, 8, 4, 3, 1, 9, 3, 3, 4, 8, 0, 7, 8, 2
OFFSET
0,1
COMMENTS
This is the limiting probability that a large random binary matrix is nonsingular (cf. A002884).
This constant is very close to 2^(13/24) * sqrt(Pi/log(2)) / exp(Pi^2/(6*log(2))) = 0.288788095086602421278899775042039398383022429351580356839... - Vaclav Kotesovec, Aug 21 2018
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
LINKS
Steven R. Finch, Digital Search Tree Constants. [Broken link]
Steven R. Finch, Digital Search Tree Constants. [From the Wayback machine]
Marvin Geiselhart, Ahmed Elkelesh, Moustafa Ebada, Sebastian Cammerer, and Stephan ten Brink, On the Automorphism Group of Polar Codes, arXiv:2101.09679 [cs.IT], 2021.
Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Victor S. Miller, Counting Matrices that are Squares, arXiv:1606.09299 [math.GR], 2016.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
V. Arvind Rameshwar, Shreyas Jain, and Navin Kashyap, Sampling-Based Estimates of the Sizes of Constrained Subcodes of Reed-Muller Codes, arXiv:2309.08907 [cs.IT], 2023.
László Tóth, Alternating sums concerning multiplicative arithmetic functions, arXiv preprint arXiv:1608.00795 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Infinite Product.
Eric Weisstein's World of Mathematics, Tree Searching.
Wanchen Zhang, Yu Ning, Fei Shi, and Xiande Zhang, Extremal Maximal Entanglement, arXiv:2411.12208 [quant-ph], 2024. See p. 15.
FORMULA
exp(-Sum_{k>0} sigma_1(k)/k*2^(-k)) = exp(-Sum_{k>0} A000203(k)/k*2^(-k)). - Hieronymus Fischer, Jul 28 2007
Lim inf Product_{k=0..floor(log_2(n))} floor(n/2^k)*2^k/n for n->oo. - Hieronymus Fischer, Aug 13 2007
Lim inf A098844(n)/n^(1+floor(log_2(n)))*2^(1/2*(1+floor(log_2(n)))*floor(log_2(n))) for n->oo. - Hieronymus Fischer, Aug 13 2007
Lim inf A098844(n)/n^(1+floor(log_2(n)))*2^A000217(floor(log_2(n)) for n->oo. - Hieronymus Fischer, Aug 13 2007
Lim inf A098844(n)/(n+1)^((1+log_2(n+1))/2) for n->oo. - Hieronymus Fischer, Aug 13 2007
(1/2)*exp(-Sum_{n>0} 2^(-n)*Sum_{k|n} 1/(k*2^k)). - Hieronymus Fischer, Aug 13 2007
Limit of A177510(n)/A000079(n-1) as n->infinity (conjecture). - Mats Granvik, Mar 27 2011
Product_{k >= 1} (1-1/2^k) = (1/2; 1/2)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
exp(Sum_{n>=1}(1/n/(1 - 2^n))) (according to Mathematica). - Mats Granvik, Sep 07 2016
(Sum_{k>0} (4^k-1)/(Product_{i=1..k} ((4^i-1)*(2*4^i-1))))*2 = 2/7 + 2/(3*7*31) + 2/(3*7*15*31*127)+2/(3*7*15*31*63*127*511) + ... (conjecture). - Werner Schulte, Dec 22 2016
Equals Sum_{k=-oo..oo} (-1)^k/2^((3*k+1)*k/2) (by Euler's pentagonal number theorem). - Amiram Eldar, Aug 13 2020
From Peter Bala, Dec 15 2020: (Start)
Constant C = Sum_{n >= 0} (-1)^n/( Product_{k = 1..n} (2^k - 1) ). The above conjectural result by Schulte follows by adding terms of this series in pairs.
C = (1/2)*Sum_{n >= 0} (-1/2)^n/( Product_{k = 1..n} (2^k - 1) ).
C = (3/8)*Sum_{n >= 0} (-1/4)^n/( Product_{k = 1..n} (2^k - 1) ).
1/C = Sum_{n >= 0} 2^(n*(n-1)/2)/( Product_{k = 1..n} (2^k - 1) ).
C = 1 - Sum_{n >= 0} (1/2)^(n+1)*Product_{k = 1..n} (1 - 1/2^k).
This latter identity generalizes as:
C = Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*C = 1 - Sum_{n >= 0} (1/8)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*C = 6 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*15*C = 91 - Sum_{n >= 0} (1/32)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
and so on, where the sequence [1, 0, 1, 6, 91, ...] is A005327.
(End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(2)) * exp(log(2)/24 - Pi^2/(6*log(2))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A005329(n).
Equals exp(-A335764). (End)
Equals 1/A065446. - Hugo Pfoertner, Nov 23 2024
EXAMPLE
(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...
MATHEMATICA
RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)
PROG
(PARI) default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
KEYWORD
nonn,cons,changed
EXTENSIONS
Corrected by Hieronymus Fischer, Jul 28 2007
STATUS
approved
a(n) = 2^(n^2 - n).
+10
67
1, 1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936, 4722366482869645213696, 1237940039285380274899124224, 1298074214633706907132624082305024, 5444517870735015415413993718908291383296, 91343852333181432387730302044767688728495783936
OFFSET
0,3
COMMENTS
Nilpotent n X n matrices over GF(2). Also number of simple digraphs (without self-loops) on n labeled nodes (see also A002416).
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(4) (sequence A053291). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
(-1)^ceiling(n/2) * resultant of the Chebyshev polynomial of first kind of degree n and Chebyshev polynomial of first kind of degree (n+1) (cf. A039991). - Benoit Cloitre, Jan 26 2003
The number of reflexive binary relations on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
From Rick L. Shepherd, Dec 24 2008: (Start)
Number of gift exchange scenarios where, for each person k of n people,
i) k gives gifts to g(k) of the others, where 0 <= g(k) <= n-1,
ii) k gives no more than one gift to any specific person,
iii) k gives no single gift to two or more people and
iv) there is no other person j such that j and k jointly give a single gift.
(In other words -- but less precisely -- each person k either gives no gifts or gives exactly one gift per person to 1 <= g(k) <= n-1 others.) (End)
In general, sequences of the form m^((n^2 - n)/2) enumerate the graphs with n labeled nodes with m types of edge. a(n) therefore is the number of labeled graphs with n nodes with 4 types of edge. To clarify the comment from Benoit Cloitre, dated Jan 26 2003, in this context: simple digraphs (without self-loops) have four types of edge. These types of edges are as follows: the absent edge, the directed edge from A -> B, the directed edge from B -> A and the bidirectional edge, A <-> B. - Mark Stander, Apr 11 2019
REFERENCES
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 521.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 5, Eq. (1.1.5).
LINKS
Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., 2 (1958), 499-504.
Murray Gerstenhaber, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., Vol. 5 (1961), 330-333.
Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
Greg Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Annals of mathematics, Second Series, Vol. 156, No. 3 (2002), pp. 835-866, arXiv preprint, arXiv:math/0008184 [math.CO], 2000-2001 (see Th. 3).
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
FORMULA
Sequence given by the Hankel transform (see A001906 for definition) of A059231 = {1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, ...}; example: det([1, 1, 5, 29; 1, 5, 29, 185; 5, 29, 185, 1257; 29, 185, 1257, 8925]) = 4^6 = 4096. - Philippe Deléham, Aug 20 2005
a(n) = 4^binomial(n, n-2). - Zerinvary Lajos, Jun 16 2007
a(n) = Sum_{i=0..n^2-n} binomial(n^2-n, i). - Rick L. Shepherd, Dec 24 2008
G.f. A(x) satisfies: A(x) = 1 + x * A(4*x). - Ilya Gutkovskiy, Jun 04 2020
Sum_{n>=1} 1/a(n) = A319016. - Amiram Eldar, Oct 27 2020
Sum_{n>=0} a(n)*u^n/A002884(n) = Product_{r>=1} 1/(1-u/q^r). - Geoffrey Critzer, Oct 28 2021
EXAMPLE
a(2)=4 because there are four 2 x 2 nilpotent matrices over GF(2):{{0,0},{0,0}},{{0,1},{0,0}},{{0,0},{1,0}},{{1,1,},{1,1}} where 1+1=0. - Geoffrey Critzer, Oct 05 2012
MAPLE
seq(4^(binomial(n, n-2)), n=0..12); # Zerinvary Lajos, Jun 16 2007
a:=n->mul(4^j, j=1..n-1): seq(a(n), n=0..12); # Zerinvary Lajos, Oct 03 2007
MATHEMATICA
Table[2^(2*Binomial[n, 2]), {n, 0, 20}] (* Geoffrey Critzer, Oct 04 2012 *)
PROG
(PARI) a(n)=1<<(n^2-n) \\ Charles R Greathouse IV, Nov 20 2012
(Python)
def A053763(n): return 1<<n*(n-1) # Chai Wah Wu, Jul 05 2024
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
Stephen G Penrice, Mar 29 2000
STATUS
approved
a(0) = 1: for n>0, a(n) = 2^floor(log_2(n)+1) or a(n) = 2*a(floor(n/2)).
+10
64
1, 2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128
OFFSET
0,2
COMMENTS
Informally, write down 1 followed by 2^k 2^(k-1) times, for k = 1,2,3,4,... These are the denominators of the binary van der Corput sequence (see A030101 for the numerators). - N. J. A. Sloane, Dec 01 2019
a(n) is the denominator of the form 2^k needed to make the ratio (2n-1)/2^k lie in the interval [1-2], i.e. such ratios are 1/1, 3/2, 5/4, 7/4, 9/8, 11/8, 13/8, 15/8, 17/16, 19/16, 21/16, ... where the numerators are A005408 (The odd numbers).
Let A_n be the upper triangular matrix in the group GL(n,2) that has zero entries below the diagonal and 1 elsewhere. For example for n=4 the matrix is / 1,1,1,1 / 0,1,1,1 / 0,0,1,1 / 0,0,0,1 /. The order of this matrix as an element of GL(n,2) is a(n-1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 14 2001
A006257(n)/a(n) = (0, 0.1, 0.01, 0.11, 0.001, ...) enumerates all binary fractions in the unit interval [0, 1). - Fredrik Johansson, Aug 14 2006
a(n) = maximum of row n+1 in A240769. - Reinhard Zumkeller, Apr 13 2014
This is the discriminator sequence for the odious numbers. - N. J. A. Sloane, May 10 2016
LINKS
L. K. Arnold, S. J. Benkoski and B. J. McCabe, The discriminator (a simple application of Bertrand's postulate). Amer. Math. Monthly 92 (1985), 275-277.
Sajed Haque, Chapter 2.6.1 of Discriminators of Integer Sequences, 2017, See p. 33.
S. Haque and J. Shallit, Discriminators and k-regular sequences, arXiv:1605.00092 [cs.DM], 2016.
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020
FORMULA
a(1) = 1 and a(n+1) = a(n)*ceiling(n/a(n)). - Benoit Cloitre, Aug 17 2002
G.f.: 1/(1-x) * (1 + Sum_{k>=0} 2^k*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = A142151(2*n)/2 + 1. - Reinhard Zumkeller, Jul 15 2008
log(a(n))/log(2) = A029837(n+1). - Johannes W. Meijer, Jul 06 2009
a(n+1) = a(n) + A099894(n). - Reinhard Zumkeller, Aug 06 2009
a(n) = A264619(n) - A264618(n). - Reinhard Zumkeller, Dec 01 2015
a(n) is the smallest power of 2 > n. - Chai Wah Wu, Nov 04 2016
a(n) = 2^ceiling(log_2(n+1)). - M. F. Hasler, Sep 20 2017
MAPLE
[seq(2^(floor_log_2(j)+1), j=0..127)]; or [seq(coerce1st_octave((2*j)+1), j=0..127)]; or [seq(a(j), j=0..127)];
coerce1st_octave := proc(r) option remember; if(r < 1) then coerce1st_octave(2*r); else if(r >= 2) then coerce1st_octave(r/2); else (r); fi; fi; end;
A062383 := proc(n)
option remember;
if n = 0 then
1 ;
else
2*procname(floor(n/2));
end if;
end proc:
A062383 := n -> 1 + Bits:-Iff(n, n):
seq(A062383(n), n=0..69); # Peter Luschny, Sep 23 2019
MATHEMATICA
a[n_] := a[n] = 2 a[n/2 // Floor]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 04 2016 *)
Table[2^Floor[Log2[n] + 1], {n, 0, 20}] (* Eric W. Weisstein, Nov 17 2017 *)
2^Floor[Log2[Range[0, 20]] + 1] (* Eric W. Weisstein, Nov 17 2017 *)
PROG
(PARI) { a=1; for (n=0, 1000, write("b062383.txt", n, " ", a*=ceil((n + 1)/a)) ) } \\ Harry J. Smith, Aug 06 2009
(PARI) a(n)=1<<(log(2*n+1)\log(2)) \\ Charles R Greathouse IV, Dec 08 2011
(Haskell)
import Data.List (transpose)
a062383 n = a062383_list !! n
a062383_list = 1 : zs where
zs = 2 : (map (* 2) $ concat $ transpose [zs, zs])
-- Reinhard Zumkeller, Aug 27 2014, Mar 13 2014
(Magma) [2^Floor(Log(2, 2*n+1)): n in [0..70]]; // Bruno Berselli, Mar 04 2016
(Python)
def A062383(n): return 1 << n.bit_length() # Chai Wah Wu, Jun 30 2022
CROSSREFS
Apart from the initial term, A062383[n] = 2* A053644[n]. MASKTRANSi(A062383) seems to give a signed form of A038712. (See identities at A053644). floor_log_2 given in A054429.
Equals A003817(n)+1. Cf. A002884.
Bisection of A065285. Cf. A076877.
Equals for n>=1 the r(n) sequence of A160464. - Johannes W. Meijer, May 24 2009
Equals the r(n) sequence of A162440 for n>=1. - Johannes W. Meijer, Jul 06 2009
Discriminator of the odious numbers (A000069). - Jeffrey Shallit, May 08 2016
KEYWORD
nonn,frac,easy
AUTHOR
Antti Karttunen, Jun 19 2001
STATUS
approved
Number of nonsingular n X n matrices over GF(3).
+10
30
1, 2, 48, 11232, 24261120, 475566474240, 84129611558952960, 134068444202678083338240, 1923442429811445711790394572800, 248381049201184165590947520186915225600, 288678833735376059528974260112416365258106470400
OFFSET
0,2
LINKS
J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher.
FORMULA
a(n) = Product_{k=0..n-1}(3^n-3^k). - corrected by Michel Marcus, Sep 18 2015
a(n) = A047656(n)*A027871(n). - Bruno Berselli, Jan 30 2013
MATHEMATICA
Table[Product[3^n - 3^k, {k, 0, n - 1}], {n, 0, 10}] (* Geoffrey Critzer, Jan 26 2013; edited by Vincenzo Librandi, Jan 28 2013 *)
PROG
(Magma) [1] cat [&*[(3^n - 3^k): k in [0..n-1]]: n in [1..9]]; // Bruno Berselli, Jan 28 2013
(PARI) for(n=0, 10, print1(prod(k=0, n-1, 3^n - 3^k), ", ")) \\ G. C. Greubel, May 31 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stephen G Penrice, Mar 04 2000
EXTENSIONS
More terms from Vladeta Jovovic, Mar 16 2000
STATUS
approved
Decimal expansion of Product_{k>=1} (1-1/2^k)^(-1).
+10
25
3, 4, 6, 2, 7, 4, 6, 6, 1, 9, 4, 5, 5, 0, 6, 3, 6, 1, 1, 5, 3, 7, 9, 5, 7, 3, 4, 2, 9, 2, 4, 4, 3, 1, 1, 6, 4, 5, 4, 0, 7, 5, 7, 9, 0, 2, 9, 0, 4, 4, 3, 8, 3, 9, 1, 3, 2, 9, 3, 5, 3, 0, 3, 1, 7, 5, 8, 9, 1, 5, 4, 3, 9, 7, 4, 0, 4, 2, 0, 6, 4, 5, 6, 8, 7, 9, 2, 7, 7, 4, 0, 2, 9, 4, 8, 4, 3, 3, 5, 3, 5, 0, 8, 8, 0
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
LINKS
Steven R. Finch, Digital Search Tree Constants [Broken link]
Steven R. Finch, Digital Search Tree Constants [From the Wayback machine]
Igor Pak, Greta Panova, and Damir Yeliussizov, On the largest Kronecker and Littlewood-Richardson coefficients, arXiv:1804.04693 [math.CO], 2018. [p. 13]
Jonathan Sondow and Eric W. Weisstein, MathWorld: Wallis Formula.
FORMULA
Equals Sum_{n>=0} 1/A002884(n)*Product_{j=1..n} 2^n/(2^n-1). - Geoffrey Critzer, Jun 30 2017
Equals 1/QPochhammer(1/2, 1/2)_{infinity}. - G. C. Greubel, Jan 18 2018
Equals 1 + Sum_{n>=1} 2^(n*(n-1)/2)/((2-1)*(2^2-1)*...*(2^n-1)). - Robert FERREOL, Feb 22 2020
Equals 1 / A048651 (constant). - Hugo Pfoertner, Nov 28 2020
Equals Sum_{n>=0} A000041(n)/2^n. - Amiram Eldar, Jan 19 2021
EXAMPLE
3.46274661945506361153795734292443116454075790290...
MAPLE
evalf(1+sum(2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 22 2020
MATHEMATICA
N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ]
RealDigits[1/QPochhammer[1/2, 1/2], 10, 100][[1]] (* Vaclav Kotesovec, Jun 22 2014 *)
PROG
(PARI) { default(realprecision, 2080); x=prodinf(k=1, 1/(1 - 1/2^k)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065446.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009
(PARI) prodinf(k=1, 1/(1-1/2^k)) \\ Michel Marcus, Feb 22 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Nov 18 2001
EXTENSIONS
More terms from Robert G. Wilson v, Nov 19 2001
Further terms from Vladeta Jovovic, Dec 01 2001
STATUS
approved
Number of invertible n X n matrices with entries equal to 0 or 1.
+10
20
1, 1, 6, 174, 22560, 12514320, 28836612000, 270345669985440, 10160459763342013440
OFFSET
0,3
COMMENTS
All eigenvalues are nonzero.
LINKS
Eric Weisstein's World of Mathematics, Nonsingular Matrix.
Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005; Linear Algebra and its Applications, 414 (2006), 310-346.
FORMULA
For an asymptotic estimate see A046747. A002884 is a lower bound. A002416 is an upper bound.
a(n) = n! * A088389(n). - Gerald McGarvey, Oct 20 2007
EXAMPLE
For n=2 the 6 matrices are {{{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}}.
PROG
(PARI) a(n)=sum(t=0, 2^n^2-1, !!matdet(matrix(n, n, i, j, (t>>(i*n+j-n-1))%2))) \\ Charles R Greathouse IV, Feb 09 2016
(Python)
from itertools import product
from sympy import Matrix
def A055165(n): return sum(1 for s in product([0, 1], repeat=n**2) if Matrix(n, n, s).det() != 0) # Chai Wah Wu, Sep 24 2021
CROSSREFS
Cf. A056990, A056989, A046747, A055165, A002416, A003024 (positive definite matrices).
A046747(n) + a(n) = 2^(n^2) = total number of n X n (0, 1) matrices = sequence A002416.
Main diagonal of A064230.
KEYWORD
nonn,nice,hard,more
AUTHOR
Ulrich Hermisson (uhermiss(AT)server1.rz.uni-leipzig.de), Jun 18 2000
EXTENSIONS
More terms from Miodrag Zivkovic (ezivkovm(AT)matf.bg.ac.rs), Feb 28 2006
Description improved by Jeffrey Shallit, Feb 17 2016
a(0)=1 prepended by Alois P. Heinz, Jun 18 2022
STATUS
approved

Search completed in 0.039 seconds