proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
The terms studied are all concentrated along lines of different gradient; the odd terms all being on the line a(n) = n or very close to it, while the even terms are distributed among the other lines dependent on the number of prime factors they contain. It is conjectured that this behavior is true for all n. The topmost line contains even semiprimes while the lower lines, those with gradient less than 1, contain powers of 2 multiplied by a larger single prime. However the topmost of these lower lines, which is more diffuse, also contains all other even numbers. Also noticeable is some of the lower lines terminating after which these values appear to move into the line contains all other even numbers.
proposed
editing
editing
proposed
Conjecture: Odd prime p precedes 2*p.
Conjecture: Odd prime p appears for odd n, but additionally, tends to occupy a(n) such that n mod A002110(k) is a reduced residue of the largest A002110(k) < n. Thus, a(n) = p for n <= p. Example, a(65) = 67 is displaced. However, generally primes represent fixed points. (End)
proposed
editing
editing
proposed
Odd prime p precedes 2*p. - _From _Michael De Vlieger_, Jun 11 2024: (Start)
Odd prime p precedes 2*p.
Odd prime p appears for odd n, but additionally, tends to occupy a(n) such that n mod A002110(k) is a reduced residue of the largest A002110(k) < n. Thus, a(n) = p for n <= p. Example, a(65) = 67 is displaced. However, generally primes represent fixed points. (End)
Michael De Vlieger, <a href="/A373545/a373545_2.png">Plot f(a(n)) in rows of 210 terms</a>, n = 1..16380, where color function f renders primes in red, perfect prime powers in gold, squarefree composites in greens, and numbers neither squarefree nor prime powers in blue or purple, where purple additionally signifies powerful numbers that are not prime powers. Bright green represents a primorial, yellow green an even squarefree semiprime, olive green an odd squarefree semiprime, and dark green other squarefree composites. Shows pattern of primes a(n) = p followed by even squarefree semiprimes 2*p, generally where n mod A002110(k) is a reduced residue. The lower image plots f(n), only showing primes in their place for comparison.
Michael De Vlieger, <a href="/A373545/a373545_2.png">Plot f(a(n)) in rows of 210 terms</a>, n = 1..16380, where color function f renders primes in red, perfect prime powers in gold, squarefree composites in greens, and numbers neither squarefree nor prime powers in blue or purple, where purple additionally signifies powerful numbers that are not prime powers. Bright green represents a primorial, yellow green an even squarefree semiprime, olive green an odd squarefree semiprime, and dark green other squarefree composites. Shows pattern of primes a(n) = p followed by even squarefree semiprimes 2*p, generally where n mod A002110(k) is a reduced residue. The lower image plots f(n), only showing primes in their place for comparison.
Michael De Vlieger, <a href="/A373545/a373545_2.png">Plot f(a(n)) in rows of 210 terms</a>, n = 1..16380, where color function f renders primes in red, perfect prime powers in gold, squarefree composites in greens, and numbers neither squarefree nor prime powers in blue or purple, where purple additionally signifies powerful numbers that are not prime powers. Bright green represents a primorial, yellow green an even squarefree semiprime, olive green an odd squarefree semiprime, and dark green other squarefree composites. Shows pattern of primes a(n) = p followed by even squarefree semiprimes 2*p, generally where n mod A002110(k) is a reduced residue. The lower image plots f(n), only showing primes in their place for comparison.
Odd prime p precedes 2*p. - Michael De Vlieger, Jun 11 2024
kk = 2; nn = 120; c[_] := False; Array[Set[{a[#], c[#]}, {#, True}] &, kk];
j = a[kk]; u = kk + 1;
Do[If[OddQ[j],
If[PrimePowerQ[j],
p = FactorInteger[j][[1, 1]];
k = #1 + Boole[#2 > 0] & @@ QuotientRemainder[u, p];
While[c[k p], k++]; k *= p,
k = u; While[Or[c[k], CoprimeQ[j, k]], k++]],
k = u; While[Or[c[k], ! CoprimeQ[j, k]], k++] ];
Set[{a[n], c[k], j}, {k, True, k}];
If[k == u, While[c[u], u++]], {n, kk + 1, nn}];
Array[a, nn] (* Michael De Vlieger, Jun 11 2024 *)
approved
editing