[go: up one dir, main page]

login
Revision History for A370464 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangular array read by rows. T(n,k) is the number of binary relations R on [n] such that the unique idempotent in {R^i:i>=1} contains exactly k non-arcless strongly connected components, n>=0, 0<=k<=n.
(history; published version)
#12 by N. J. A. Sloane at Tue Feb 20 10:37:28 EST 2024
STATUS

proposed

approved

#11 by Geoffrey Critzer at Tue Feb 20 08:02:51 EST 2024
STATUS

editing

proposed

#10 by Geoffrey Critzer at Tue Feb 20 08:02:16 EST 2024
KEYWORD

nonn,more,tabf,tabl,changed

STATUS

proposed

editing

Discussion
Tue Feb 20
08:02
Geoffrey Critzer: Yes thanks.
#9 by Geoffrey Critzer at Mon Feb 19 15:05:45 EST 2024
STATUS

editing

proposed

Discussion
Mon Feb 19
16:03
Michel Marcus: tabf should be tabl ?
#8 by Geoffrey Critzer at Mon Feb 19 15:03:53 EST 2024
LINKS

E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.

MATHEMATICA

nn = 5; B[n_] := n! 2^Binomial[n, 2]; s[x_, y_] := y x + (3 y + y^2) x^2/2! + (139 y + 3 y^2 + 2 y^3) x^3/3! + (25575 y + 103 y^2 + 12 y^3 + 6 y^4) x^4/

4! + (18077431 y + 4815 y^2 + 230 y^3 + 60 y^4 + 24 y^5) x^5/5! ;

ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Map[Select[#, # > 0 &] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(x + s[x, y])]], {x, 0, nn}], {x, y}]]

#7 by Geoffrey Critzer at Mon Feb 19 15:01:39 EST 2024
FORMULA

Sum_{n>=1} Sum_{k=1..n} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(- (x + s(x,y)))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)) and @ is the exponential Hadamard product (see Panafieu and Dovgal) and s(x,y) is the e.g.f. for A367948.

#6 by Geoffrey Critzer at Mon Feb 19 14:57:19 EST 2024
NAME

allocated for Geoffrey CritzerTriangular array read by rows. T(n,k) is the number of binary relations R on [n] such that the unique idempotent in {R^i:i>=1} contains exactly k non-arcless strongly connected components, n>=0, 0<=k<=n.

DATA

1, 1, 1, 3, 9, 4, 25, 277, 162, 48, 543, 38409, 18136, 6912, 1536, 29281, 23169481, 7195590, 2346000, 691200, 122880

OFFSET

0,4

EXAMPLE

Triangle begins ...

1;

1, 1;

3, 9, 4;

25, 277, 162, 48;

543, 38409, 18136, 6912, 1536;

29281, 23169481, 7195590, 2346000, 691200, 122880;

...

CROSSREFS

Cf. A002416 (row sums), A003024 (column k=0), A011266 (main diagonal), A370385.

KEYWORD

allocated

nonn,more,tabf

AUTHOR

Geoffrey Critzer, Feb 19 2024

STATUS

approved

editing

#5 by Geoffrey Critzer at Mon Feb 19 14:57:19 EST 2024
NAME

allocated for Geoffrey Critzer

KEYWORD

recycled

allocated

#4 by Joerg Arndt at Mon Feb 19 10:43:05 EST 2024
STATUS

editing

approved

#3 by Tomasz Dziekanski at Mon Feb 19 08:12:29 EST 2024
NAME

allocated for Tomasz Dziekanski

KEYWORD

allocated

recycled

STATUS

approved

editing