proposed
approved
proposed
approved
editing
proposed
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
E.g.f.: exp( -LambertW(-x/(1-x)^3) )/(1-x)^2.
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+2*k+1,n-k)/k!.
allocated for Seiichi Manyama
E.g.f. satisfies A(x) = exp( x * A(x) / (1-x) ) / (1-x)^2.
1, 3, 19, 202, 3085, 61886, 1544029, 46182900, 1612759369, 64455582394, 2902794546961, 145497909334856, 8035136800888333, 484821204654219798, 31735810390729211173, 2240132583683741633116, 169624462686462529305745, 13715713402047448280358002, 1179576532854283015832748697
0,2
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+2*k+1, n-k)/k!);
allocated
nonn
Seiichi Manyama, Nov 14 2024
approved
editing
allocated for Seiichi Manyama
recycled
allocated
editing
approved
7-smooth numbers k such that k / (next 7-smooth number after k) reaches a record large value.
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, 250000, 78121827, 205885750000000, 2251783932057135, 363797880709171295166015625, 37252879910233655318543787489, 639471113830161648869830843378434048, 386856165263818792142417337638583138065421
1,2
Michael S. Branicky, <a href="/A377608/b377608_2.txt">Table of n, a(n) for n = 1..35</a>
(Python) # uses A002473gen() in A002473
from itertools import islice
from fractions import Fraction
def agen():
g = A002473gen(); k = next(g); record = 0
while True:
nextk = next(g); f = Fraction(k, nextk)
if f > record: yield k; record = f
k = nextk
print(list(islice(agen(), 30))) # Michael S. Branicky, Nov 03 2024
nonn,changed
recycled
_Chengcheng Wei_, Nov 02 2024
a(24) corrected and a(26) and beyond from Michael S. Branicky, Nov 02 2024
proposed
editing