[go: up one dir, main page]

login
Revision History for A362209 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Irregular triangle read by rows: T(n, k) is the number of k X k matrices using all the integers from 1 to k^2 and having trace equal to n, with 1 <= k <= A003056(n).
(history; published version)
#11 by N. J. A. Sloane at Sun Apr 16 20:37:44 EDT 2023
STATUS

proposed

approved

#10 by Stefano Spezia at Tue Apr 11 15:00:48 EDT 2023
STATUS

editing

proposed

#9 by Stefano Spezia at Tue Apr 11 14:58:45 EDT 2023
MATHEMATICA

A362208[n_, k_] := Length[Select[Join@@Permutations/@Select[IntegerPartitions[n, All, Range[k^2]], UnsameQ@@#&], Length[#]==k&]]; Table[(k^2-k)!A362208[n, k], {n, 15}, {k, Floor[(Sqrt[8n+1]-1)/2]}]//Flatten

#8 by Stefano Spezia at Tue Apr 11 14:57:13 EDT 2023
FORMULA

T(n, k) = A362176A362187(k)*A362208(n, k).

CROSSREFS

Cf. A000290, A003056 (row lengths), A345132, A362176, A362187, A362208.

#7 by Stefano Spezia at Tue Apr 11 04:33:59 EDT 2023
EXAMPLE

T(5,2) = 8 since we have:

[1, 2] [1, 3] [4, 2] [4, 3]

[3, 4], [2, 4], [3, 1], [2, 1],

.

[2, 1] [2, 4] [3, 1] [3, 4]

[4, 3], [1, 3], [4, 2], [1, 2].

#6 by Stefano Spezia at Tue Apr 11 04:21:29 EDT 2023
EXAMPLE

Irregular triangle begins: 1; 0; 0, 4; 0, 4; 0, 8; 0, 4, 4320; 0, 4, 4320; 0, 0, 8640; 0, 0, 12960; 0, 0, 17280, 11496038400; 0, 0, 21600, 11496038400; 0, 0, 30240, 22992076800; 0, 0, 30240, 34488115200; 0, 0, 34560, 57480192000; 0, 0, 34560, 68976230400, 291948240981196800000;

Irregular triangle begins:

1;

0;

0, 4;

0, 4;

0, 8;

0, 4, 4320;

0, 4, 4320;

0, 0, 8640;

0, 0, 12960;

0, 0, 17280, 11496038400;

0, 0, 21600, 11496038400;

0, 0, 30240, 22992076800;

0, 0, 30240, 34488115200;

0, 0, 34560, 57480192000;

0, 0, 34560, 68976230400, 291948240981196800000;

#5 by Stefano Spezia at Tue Apr 11 04:20:32 EDT 2023
EXAMPLE

Irregular triangle begins: 1; 0; 0, 4; 0, 4; 0, 8; 0, 4, 4320; 0, 4, 4320; 0, 0, 8640; 0, 0, 12960; 0, 0, 17280, 11496038400; 0, 0, 21600, 11496038400; 0, 0, 30240, 22992076800; 0, 0, 30240, 34488115200; 0, 0, 34560, 57480192000; 0, 0, 34560, 68976230400, 291948240981196800000;

...

#4 by Stefano Spezia at Tue Apr 11 04:19:59 EDT 2023
MATHEMATICA

A362208[n_, k_] := Length[Select[Join@@Permutations/@Select[IntegerPartitions[n, All, Range[k^2]], UnsameQ@@#&], Length[#]==k&]]; Table[(k^2-k)!A362208[n, k], {n, 15}, {k, (Sqrt[8n+1]-1)/2}]//Flatten

#3 by Stefano Spezia at Tue Apr 11 04:19:44 EDT 2023
MATHEMATICA

A362208[n_, k_]:=Length[Select[Join@@Permutations/@Select[IntegerPartitions[n, All, Range[k^2]], UnsameQ@@#&], Length[#]==k&]]; Table[(k^2-k)!A362208[n, k], {n, 15}, {k, (Sqrt[8n+1]-1)/2}]//Flatten

#2 by Stefano Spezia at Tue Apr 11 04:19:10 EDT 2023
NAME

allocated for Stefano SpeziaIrregular triangle read by rows: T(n, k) is the number of k X k matrices using all the integers from 1 to k^2 and having trace equal to n, with 1 <= k <= A003056(n).

DATA

1, 0, 0, 4, 0, 4, 0, 8, 0, 4, 4320, 0, 4, 4320, 0, 0, 8640, 0, 0, 12960, 0, 0, 17280, 11496038400, 0, 0, 21600, 11496038400, 0, 0, 30240, 22992076800, 0, 0, 30240, 34488115200, 0, 0, 34560, 57480192000, 0, 0, 34560, 68976230400, 291948240981196800000

OFFSET

1,4

FORMULA

T(n, k) = A362176(k)*A362208(n, k).

MATHEMATICA

A362208[n_, k_]:=Length[Select[Join@@Permutations/@Select[IntegerPartitions[n, All, Range[k^2]], UnsameQ@@#&], Length[#]==k&]]; Table[(k^2-k)!A362208[n, k], {n, 15}, {k, (Sqrt[8n+1]-1)/2}]//Flatten

CROSSREFS

Cf. A000290, A003056 (row lengths), A345132, A362176, A362208.

KEYWORD

allocated

nonn,tabf

AUTHOR

Stefano Spezia, Apr 11 2023

STATUS

approved

editing