editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
(4) A(x)^2 = F(2*x) where F(x/F(x)) = exp(x*F(x)) and F(x) is the e.g.f. of A367385.
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
editing
proposed
allocated for Paul D. Hanna
Expansion of e.g.f. A(x) satisfying A(x/A(x)^2) = exp(x*A(x)^2).
1, 1, 9, 217, 9521, 634321, 58026745, 6846238057, 998806698209, 174849870369313, 35915074166268521, 8507730512772340345, 2292605150744212481809, 695028316821630097748209, 234883073320203308189545049, 87808334177056337272289692681, 36075481332626610937457504918465
0,3
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x/A(x)^2) = exp(x*A(x)^2).
(2) A(x) = exp(x*B(x)^4) where B(x) = A(x*B(x)^2) = ( (1/x)*Series_Reversion(x/A(x)^2) )^(1/2).
(3) A(x/C(x)^4) = exp(x) where C(x) = A(x/C(x)^2) = ( x/Series_Reversion(x*A(x)^2) )^(1/2).
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 217*x^3/3! + 9521*x^4/4! + 634321*x^5/5! + 58026745*x^6/6! + 6846238057*x^7/7! + 998806698209*x^8/8! + ...
where A(x/A(x)^2) = exp(x*A(x)^2) and
exp(x*A(x)^2) = 1 + x + 5*x^2/2! + 73*x^3/3! + 2265*x^4/4! + 119361*x^5/5! + 9255133*x^6/6! + 965731593*x^7/7! + ...
A(x)^2 = 1 + 2*x + 20*x^2/2! + 488*x^3/3! + 21264*x^4/4! + 1402912*x^5/5! + 127177792*x^6/6! + 14889247872*x^7/7! + ...
Also,
A(x) = exp(x*B(x)^4) where B(x) = A(x*B(x)^2) begins
B(x) = 1 + x + 13*x^2/2! + 409*x^3/3! + 21769*x^4/4! + 1680161*x^5/5! + 172774357*x^6/6! + 22446379705*x^7/7! + ...
B(x)^2 = 1 + 2*x + 28*x^2/2! + 896*x^3/3! + 47824*x^4/4! + 3684352*x^5/5! + 377546176*x^6/6! + ...
B(x)^4 = 1 + 4*x + 64*x^2/2! + 2128*x^3/3! + 114688*x^4/4! + 8826944*x^5/5! + 899745280*x^6/6! + ...
Further,
A(x/C(x)^4) = exp(x) where C(x) = A(x/C(x)^2) begins
C(x) = 1 + x + 5*x^2/2! + 97*x^3/3! + 3801*x^4/4! + 233681*x^5/5! + 20005213*x^6/6! + 2225362161*x^7/7! + ...
C(x)^2 = 1 + 2*x + 12*x^2/2! + 224*x^3/3! + 8528*x^4/4! + 515072*x^5/5! + 43572928*x^6/6! + ...
C(x)^4 = 1 + 4*x + 32*x^2/2! + 592*x^3/3! + 21504*x^4/4! + 1254464*x^5/5! + 103581184*x^6/6! + ...
(PARI) {a(n) = my(A=1+x); for(i=0, n, A = exp( x*((1/x)*serreverse( x/(A^2 + x*O(x^n)) ))^2 )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
Cf. A367385.
allocated
nonn
Paul D. Hanna, Jan 01 2024
approved
editing
allocated for Paul D. Hanna
allocated
approved