[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A368632 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of e.g.f. A(x) satisfying A(x/A(x)^2) = exp(x*A(x)^2).
(history; published version)
#9 by Paul D. Hanna at Thu Jan 04 08:32:29 EST 2024
STATUS

editing

approved

#8 by Paul D. Hanna at Thu Jan 04 08:32:26 EST 2024
FORMULA

(4) A(x)^2 = F(2*x) where F(x/F(x)) = exp(x*F(x)) and F(x) is the e.g.f. of A367385.

STATUS

approved

editing

#7 by Michel Marcus at Tue Jan 02 02:50:57 EST 2024
STATUS

reviewed

approved

#6 by Joerg Arndt at Tue Jan 02 00:01:17 EST 2024
STATUS

proposed

reviewed

#5 by Paul D. Hanna at Mon Jan 01 14:49:52 EST 2024
STATUS

editing

proposed

#4 by Paul D. Hanna at Mon Jan 01 14:49:50 EST 2024
CROSSREFS
STATUS

proposed

editing

#3 by Paul D. Hanna at Mon Jan 01 14:48:13 EST 2024
STATUS

editing

proposed

#2 by Paul D. Hanna at Mon Jan 01 14:47:52 EST 2024
NAME

allocated for Paul D. Hanna

Expansion of e.g.f. A(x) satisfying A(x/A(x)^2) = exp(x*A(x)^2).

DATA

1, 1, 9, 217, 9521, 634321, 58026745, 6846238057, 998806698209, 174849870369313, 35915074166268521, 8507730512772340345, 2292605150744212481809, 695028316821630097748209, 234883073320203308189545049, 87808334177056337272289692681, 36075481332626610937457504918465

OFFSET

0,3

FORMULA

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.

(1) A(x/A(x)^2) = exp(x*A(x)^2).

(2) A(x) = exp(x*B(x)^4) where B(x) = A(x*B(x)^2) = ( (1/x)*Series_Reversion(x/A(x)^2) )^(1/2).

(3) A(x/C(x)^4) = exp(x) where C(x) = A(x/C(x)^2) = ( x/Series_Reversion(x*A(x)^2) )^(1/2).

EXAMPLE

E.g.f.: A(x) = 1 + x + 9*x^2/2! + 217*x^3/3! + 9521*x^4/4! + 634321*x^5/5! + 58026745*x^6/6! + 6846238057*x^7/7! + 998806698209*x^8/8! + ...

where A(x/A(x)^2) = exp(x*A(x)^2) and

exp(x*A(x)^2) = 1 + x + 5*x^2/2! + 73*x^3/3! + 2265*x^4/4! + 119361*x^5/5! + 9255133*x^6/6! + 965731593*x^7/7! + ...

A(x)^2 = 1 + 2*x + 20*x^2/2! + 488*x^3/3! + 21264*x^4/4! + 1402912*x^5/5! + 127177792*x^6/6! + 14889247872*x^7/7! + ...

Also,

A(x) = exp(x*B(x)^4) where B(x) = A(x*B(x)^2) begins

B(x) = 1 + x + 13*x^2/2! + 409*x^3/3! + 21769*x^4/4! + 1680161*x^5/5! + 172774357*x^6/6! + 22446379705*x^7/7! + ...

B(x)^2 = 1 + 2*x + 28*x^2/2! + 896*x^3/3! + 47824*x^4/4! + 3684352*x^5/5! + 377546176*x^6/6! + ...

B(x)^4 = 1 + 4*x + 64*x^2/2! + 2128*x^3/3! + 114688*x^4/4! + 8826944*x^5/5! + 899745280*x^6/6! + ...

Further,

A(x/C(x)^4) = exp(x) where C(x) = A(x/C(x)^2) begins

C(x) = 1 + x + 5*x^2/2! + 97*x^3/3! + 3801*x^4/4! + 233681*x^5/5! + 20005213*x^6/6! + 2225362161*x^7/7! + ...

C(x)^2 = 1 + 2*x + 12*x^2/2! + 224*x^3/3! + 8528*x^4/4! + 515072*x^5/5! + 43572928*x^6/6! + ...

C(x)^4 = 1 + 4*x + 32*x^2/2! + 592*x^3/3! + 21504*x^4/4! + 1254464*x^5/5! + 103581184*x^6/6! + ...

PROG

(PARI) {a(n) = my(A=1+x); for(i=0, n, A = exp( x*((1/x)*serreverse( x/(A^2 + x*O(x^n)) ))^2 )); n!*polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A367385.

KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Jan 01 2024

STATUS

approved

editing

#1 by Paul D. Hanna at Mon Jan 01 14:43:36 EST 2024
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved