proposed
approved
proposed
approved
editing
proposed
Robert Ferréol, <a href="https://mathcurve.com/surfaces.gb/boheme/boheme.shtml">Bohemian Domedome</a>, Mathcurve.
Robert Ferréol, <a href="https://mathcurve.com/surfaces.gb/boheme/boheme.shtml">Bohemain Bohemian Dome</a>, Mathcurve.
Robert Ferréol, <a href="https://mathcurve.com/surfaces.gb/boheme/boheme.shtml">Bohemain Dome</a>, Mathcurve.
proposed
editing
editing
proposed
Decimal expansion of Integral_{0<=x,y<=Pi/2} sqrt(1-cos^2(x)*cos^2(y))dxdy dx dy.
Equals Sum _{n>=0} (Pi^2/(4*(2*n-1))*(binomial(2*n,n)/4^n)^3).
Equals (E(a) - K(a))^2 + E(a)^2 where a = 1/sqrt(2) and E (resp. K) is the complete elliptic integral of the second (resp. first) kind.
Cf. A091670 ((1/Pi^2)*Integral_{0<=x,y<=Pi} 1/sqrt(1-cos^2(x)*cos^2(y))dxdy/Pi^2 dx dy).
proposed
editing
editing
proposed
a:=1/sqrt(2):evalf((EllipticK(a)-EllipticE(a)-EllipticK(a))^2+EllipticE(a)^2, 50);
Cf. A091670 (Integral_{0<=x,y<=piPi}1/sqrt(1-cos^2(x)*cos^2(y))dxdy/Pi^2).
proposed
editing
editing
proposed