G. C. Greubel, <a href="/A345466/b345466_1.txt">Table of n, a(n) for n = 0..160</a>
G. C. Greubel, <a href="/A345466/b345466_1.txt">Table of n, a(n) for n = 0..160</a>
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A345466/b345466_1.txt">Table of n, a(n) for n = 0..160</a>
(Magma) [n eq 0 select 1 else (&*[Binomial(n, Floor(n/j)): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 05 2024
(SageMath) [product(binomial(n, (n//j)) for j in range(1, n+1)) for n in range(31)] # G. C. Greubel, Feb 05 2024
approved
editing
editing
approved
Conjecture: log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 21 2021
approved
editing
editing
approved
a(n) = Product_{k=1..n} ((n+1)/k - 1)^floor(n/k). - Vaclav Kotesovec, Jun 24 2021
Table[Product[((n + 1)/k - 1)^Floor[n/k], {k, 1, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jun 24 2021 *)
Table[Product[((n + 1)/k - 1)^Floor[n/k], {k, 1, n}], {n, 0, 20}]
approved
editing