proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
Robert Israel, <a href="/A339269/b339269.txt">Table of n, a(n) for n = 1..50</a>
If n > 2 is odd, the sum of n consecutive odd primes is odd, so (if nonzero) a(n) >= 3^n.
approved
editing
proposed
approved
editing
proposed
a(n) is the least number that is the product of n primes (not necessarily distinct) and is the sum of n consecutive primes, or 0 if there are none.
sumofconsecprimes:= proc(x, n)
local P, k, p, q, t;
P:= nextprime(floor(x/n));
p:= P; q:= P;
for k from 1 to n-1 do
if k::even or q = 2 then p:= nextprime(p); P:= P, p;
else q:= prevprime(q); P:= q, P;
fi
od;
P:= [P];
t:= convert(P, `+`);
if t = x then return P fi;
if t > x then
while t > x do
if q = 2 then return false fi;
q:= prevprime(q);
t:= t + q - p;
P:= [q, op(P[1..-2])];
p:= P[-1];
if t = x then return P fi;
od
else
while t < x do
p:= nextprime(p);
t:= t + p - q;
P:= [op(P[2..-1]), p];
q:= P[1];
if t = x then return P fi;
od
fi;
false
end proc:
children:= proc(r) local L, x, p, q, t, R;
x:= r[1];
L:= r[2];
t:= L[-1];
p:= t[1]; q:= nextprime(p);
if t[2]=1 then t:= [q, 1];
else t:= [p, t[2]-1], [q, 1]
fi;
R:= [x*q/p, [op(L[1..-2]), t]];
if nops(L) >= 2 then
p:= L[-2][1];
q:= L[-1][1];
if L[-2][2]=1 then t:= [q, L[-1][2]+1]
else t:= [p, L[-2][2]-1], [q, L[-1][2]+1]
fi;
R:= R, [x*q/p, [op(L[1..-3]), t]]
fi;
[R]
end proc:
f:= proc(n) local Q, t, x, v;
uses priqueue;
initialize(Q);
if n::even then insert([-2^n, [[2, n]]], Q)
else insert([-3^n, [[3, n]]], Q)
fi;
do
t:= extract(Q);
x:= -t[1];
v:= sumofconsecprimes(x, n);
if v <> false then return x fi;
for t in children(t) do insert(t, Q) od;
od
end proc:
f(1):= 2:
f(2):= 0:
map(f, [$1..34]);
0,1,1
Conjecture: a(n) > 0 for every n > 2.
a(3)=425 because 425 = 5^2*7 is the product of three primes and 425 = 137+139+149 is the sum of three consecutive primes, and no smaller number has this property.