[go: up one dir, main page]

login
Revision History for A339122 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of elements of the Rubik's Cube group of order A338883(n).
(history; published version)
#23 by OEIS Server at Tue Aug 30 14:17:46 EDT 2022
LINKS

Ben Whitmore, <a href="/A339122/b339122_1.txt">Table of n, a(n) for n = 1..73</a>

#22 by N. J. A. Sloane at Tue Aug 30 14:17:46 EDT 2022
STATUS

proposed

approved

Discussion
Tue Aug 30
14:17
OEIS Server: Installed new b-file as b339122.txt.  Old b-file is now b339122_1.txt.
#21 by Herbert Kociemba at Thu Jun 30 17:44:05 EDT 2022
STATUS

editing

proposed

#20 by Herbert Kociemba at Thu Jun 30 17:35:24 EDT 2022
MATHEMATICA

Module[{z}, z = pN[p1] pN[p2]; {{LCM[ord[p1], ord[p2]],

{{LCM[ord[p1], ord[p2]], z oriN[p1, o1][[1]] oriN[p2, o2][[1]]}, {{LCM[ord[p1] o1,

{{LCM[ord[p1] o1, ord[p2]], z oriN[p1, o1][[2]] oriN[p2, o2][[1]]}}, {{LCM[ord[p1], ord[p2] o2], z oriN[p1, o1][[1]] oriN[p2, o2][[2]], }},

{{LCM[ord[p1] o1, ord[p2] o2], z oriN[p1, o1][[2]] oriN[p2, o2][[12]] }}, {{LCM[ord[p1}],

ord[p2] o2],

z oriN[p1, o1][[1]] oriN[p2, o2][[2]] }}, {{LCM[ord[p1] o1,

ord[p2] o2], z oriN[p1, o1][[2]] oriN[p2, o2][[2]] }}}]

For[j = 1, j <= Length[ee], j++,

For[j = 1, j <= Length[eo], j++,

Discussion
Thu Jun 30
17:43
Herbert Kociemba: Tom asked me if I would be able to compute the numbers and wrote a Mathematica program without knowing Tom's numbers. Now we compared and they match exactly and also show that there are 13 wrong entries in Cubic Circular. I hope the code is short  enough to include  it here.
#19 by Herbert Kociemba at Thu Jun 30 17:30:59 EDT 2022
MATHEMATICA

pN[p_] := Total[p]!/Times@@p/Times@@Factorial[Flatten[Tally[p]][[2 ;; ;; 2]]]

oddQ[p_] := OddQ[Total[p - 1]]

ord[p_] := LCM @@ p

oriN[p_, o_] := Module[{i, t, a = 0, ns = 0, s = 0, r}, t = ord[p]/p;

For[i = 1, i <= Length[p], i++,

If[Mod[t[[i]], o] == 0, a += p[[i]], ns += 1; s += p[[i]]]];

{If[a == 0, r = o^(s - ns), r = o^a o^(s - ns - 1)], o^(a + s - 1) - r}]

val[p1_, o1_, p2_, o2_] :=

Module[{z}, z = pN[p1] pN[p2]; {{LCM[ord[p1], ord[p2]],

z oriN[p1, o1][[1]] oriN[p2, o2][[1]]}, {{LCM[ord[p1] o1,

ord[p2]],

z oriN[p1, o1][[2]] oriN[p2, o2][[1]] }}, {{LCM[ord[p1],

ord[p2] o2],

z oriN[p1, o1][[1]] oriN[p2, o2][[2]] }}, {{LCM[ord[p1] o1,

ord[p2] o2], z oriN[p1, o1][[2]] oriN[p2, o2][[2]] }}}]

p8 = IntegerPartitions[8]; p12 = IntegerPartitions[12];

ce = Select[p8, ! oddQ[#] &]; co = Select[p8, oddQ[#] &];

ee = Select[p12, ! oddQ[#] &]; eo = Select[p12, oddQ[#] &];

res = {}; max = 0;

For[i = 1, i <= Length[ce], i++,

For[j = 1, j <= Length[ee], j++,

AppendTo[res, val[ce[[i]], 3, ee[[j]], 2]]]]

For[i = 1, i <= Length[co], i++,

For[j = 1, j <= Length[eo], j++,

AppendTo[res, val[co[[i]], 3, eo[[j]], 2]]]]

p = Partition[res // Flatten, 2]; c // Clear;

For[i = 1, i <= Length[p], i++,

If [IntegerQ[c[p[[i, 1]]]], c[p[[i, 1]]] += p[[i, 2]],

c[p[[i, 1]]] = p[[i, 2]]]; If[p[[i, 1]] > max, max = p[[i, 1]]]];

Select[Table[c[i], {i, 1, max}], IntegerQ[#] &] (* Herbert Kociemba, Jun 30 2022 *)

STATUS

proposed

editing

#18 by Michel Marcus at Mon Jun 27 13:17:20 EDT 2022
STATUS

editing

proposed

Discussion
Mon Jun 27
13:18
Ben Whitmore: There were 13 wrong entries in the sequence, not just a(10).
#17 by Michel Marcus at Mon Jun 27 13:17:05 EDT 2022
EXTENSIONS

Corrected a(10) corrected by Ben Whitmore, Jun 27 2022

STATUS

proposed

editing

Discussion
Mon Jun 27
13:17
Michel Marcus: let's be precise
#16 by Ben Whitmore at Mon Jun 27 12:35:29 EDT 2022
STATUS

editing

proposed

#15 by Ben Whitmore at Mon Jun 27 12:34:21 EDT 2022
PROG

(Python) # See post #11 in SpeedSolving Puzzles Community link.

#14 by Ben Whitmore at Mon Jun 27 12:05:19 EDT 2022
DATA

1, 170911549183, 33894540622394, 4346957030144256, 133528172514624, 140621059298755526, 153245517148800, 294998638981939200, 55333752398428896, 65250897836352192, 34178553690432192, 44590694400, 2330232827455554048, 23298374383021440, 14385471333209856, 150731886270873600

COMMENTS

The most common order is 60, with a(33) = 4601524692892925952 4199961633799421952 elements, or about 109.6471% of the group.

LINKS

Ben Whitmore, <a href="/A339122/b339122_1.txt">Table of n, a(n) for n = 1..73</a>

Jaap's Puzzle Page, Tomas Rokicki, <a href="https://www.jaapschspeedsolving.netcom/puzzlesthreads/cubic3average-scramble-loop-length.htm85241/#p35post-1451996">Order of elementsSpeedSolving Puzzles Community</a>, Cubic Circular, Issue 3 & 4, Spring & Summer 1982, p. 35.

EXTENSIONS

Corrected by Ben Whitmore, Jun 27 2022

STATUS

approved

editing

Discussion
Mon Jun 27
12:12
Ben Whitmore: When I was talking with Tomas yesterday, I noticed that his computation of this sequence disagreed with the numbers from the old Cubic Circular link. Upon further investigation, it turns out that some of the terms from Cubic Circular are wrong.