proposed
approved
proposed
approved
editing
proposed
allocated for Ilya GutkovskiySquare array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, d==1 (mod 4)} d^k - Sum_{d|n, d==3 (mod 4)} d^k.
1, 1, 1, 1, 1, 0, 1, 1, -2, 1, 1, 1, -8, 1, 2, 1, 1, -26, 1, 6, 0, 1, 1, -80, 1, 26, -2, 0, 1, 1, -242, 1, 126, -8, -6, 1, 1, 1, -728, 1, 626, -26, -48, 1, 1, 1, 1, -2186, 1, 3126, -80, -342, 1, 7, 2, 1, 1, -6560, 1, 15626, -242, -2400, 1, 73, 6, 0, 1, 1, -19682, 1, 78126, -728, -16806, 1, 703, 26, -10, 0
1,9
<a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>
G.f. of column k: Sum_{j>=1} (-1)^(j-1)*(2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
0, -2, -8, -26, -80, -242, ...
1, 1, 1, 1, 1, 1, ...
2, 6, 26, 126, 626, 3126, ...
0, -2, -8, -26, -80, -242, ...
Table[Function[k, SeriesCoefficient[Sum[(-1)^(j - 1) (2 j - 1)^k x^(2 j - 1)/(1 - x^(2 j - 1)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
allocated
sign,tabl
Ilya Gutkovskiy, Nov 28 2018
approved
editing
allocated for Ilya Gutkovskiy
allocated
approved