editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
G.f.: (1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)).
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3). - Wesley Ivan Hurt, Aug 25 2022
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
(PARI) Vec((1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)) + O(x^30)) \\ Michel Marcus, Oct 13 2019
proposed
editing
editing
proposed
allocated for Ilya Gutkovskiy
Expansion of (1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)).
1, 5, 10, 60, 110, 610, 1110, 6110, 11110, 61110, 111110, 611110, 1111110, 6111110, 11111110, 61111110, 111111110, 611111110, 1111111110, 6111111110, 11111111110, 61111111110, 111111111110, 611111111110, 1111111111110, 6111111111110, 11111111111110, 61111111111110, 111111111111110
0,2
Number of odd palindromes <= 10^n.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,10,-10).
nmax = 28; CoefficientList[Series[(1 + 4 x - 5 x^2 + 10 x^3) / ((1 - x) (1 - 10 x^2)), {x, 0, nmax}], x]
Join[{1}, LinearRecurrence[{1, 10, -10}, {5, 10, 60}, 28]]
allocated
nonn,base,easy
Ilya Gutkovskiy, Oct 12 2019
approved
editing
allocated for Ilya Gutkovskiy
allocated
approved