editing
approved
editing
approved
Conjecture: T(n,k) = Sum_{i=0..n} A132393(i,k) for 0 <= k <= n (conjectured). - Werner Schulte, Mar 30 2022
proposed
editing
editing
proposed
T(n,k) = Sum_{i=0..n} A132393(i,k) for 0 <= k <= n (conjectured). - Werner Schulte, Mar 30 2022
approved
editing
editing
approved
Table[CoefficientList[FunctionExpand[Sum[Pochhammer[x, k], {k, 0, n}]], x], {n, 0, 10}] // Flatten
The inverse of the lower triangular matrix is the signed form of A256894.
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 2, 1]
[3] [1, 4, 4, 1]
[4] [1, 10, 15, 7, 1]
[5] [1, 34, 65, 42, 11, 1]
[6] [1, 154, 339, 267, 96, 16, 1]
[7] [1, 874, 2103, 1891, 831, 191, 22, 1]
[8] [1, 5914, 15171, 15023, 7600, 2151, 344, 29, 1]
[9] [1, 46234, 124755, 133147, 74884, 24600, 4880, 575, 37, 1]
allocated T(n, k) = [x^k] Sum_{j=0..n} Pochhammer(x, j), for Peter Luschny0 <= k <= n, triangle read by rows.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 15, 7, 1, 1, 34, 65, 42, 11, 1, 1, 154, 339, 267, 96, 16, 1, 1, 874, 2103, 1891, 831, 191, 22, 1, 1, 5914, 15171, 15023, 7600, 2151, 344, 29, 1, 1, 46234, 124755, 133147, 74884, 24600, 4880, 575, 37, 1
0,5
Sum_{k=0..n) T(n, k)*x^k = Sum_{k=0..n) (x)^k, where (x)^k denotes the rising factorial.
with(PolynomialTools):
T_row := n -> CoefficientList(expand(add(pochhammer(x, j), j=0..n)), x):
ListTools:-Flatten([seq(T_row(n), n=0..9)]);
Same construct for the falling factorial is A176663.
allocated
nonn,tabl
Peter Luschny, Jul 02 2019
approved
editing