[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A318969 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of exp(Sum_{k>=1} ( Sum_{p|k, p prime} p^k ) * x^k/k).
(history; published version)
#5 by Susanna Cuyler at Fri Sep 07 04:47:19 EDT 2018
STATUS

proposed

approved

#4 by Ilya Gutkovskiy at Thu Sep 06 13:40:49 EDT 2018
STATUS

editing

proposed

#3 by Ilya Gutkovskiy at Thu Sep 06 13:39:29 EDT 2018
#2 by Ilya Gutkovskiy at Thu Sep 06 12:47:30 EDT 2018
NAME

allocated for Ilya GutkovskiyExpansion of exp(Sum_{k>=1} ( Sum_{p|k, p prime} p^k ) * x^k/k).

DATA

1, 0, 2, 9, 6, 643, 182, 118953, 6019, 242630, 2243190, 25938251679, 78106516, 23349992199606, 288964822371, 46755212195033, 226472341461312, 48661337027901364945, 18066374340919781, 104224677113940850317679, 440728415311733637734, 208546898802899685866735, 972477473959172989443327

OFFSET

0,3

FORMULA

G.f.: Product_{k>=1} 1/(1 - prime(k)^prime(k)*x^prime(k))^(1/prime(k)).

MATHEMATICA

nmax = 22; CoefficientList[Series[Exp[Sum[Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]

nmax = 22; CoefficientList[Series[Product[1/(1 - Prime[k]^Prime[k] x^Prime[k])^(1/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 22}]

KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, Sep 06 2018

STATUS

approved

editing

#1 by Ilya Gutkovskiy at Thu Sep 06 12:47:30 EDT 2018
NAME

allocated for Ilya Gutkovskiy

KEYWORD

allocated

STATUS

approved