[go: up one dir, main page]

login
Revision History for A291758 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Compound filter (prime signature of n & sum of squarefree divisors of n): a(n) = P(A046523(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.
(history; published version)
#7 by N. J. A. Sloane at Sun Sep 10 14:53:56 EDT 2017
STATUS

proposed

approved

#6 by Antti Karttunen at Sun Sep 10 12:25:26 EDT 2017
STATUS

editing

proposed

#5 by Antti Karttunen at Sun Sep 10 12:19:11 EDT 2017
LINKS

Antti Karttunen, <a href="/A291758/b291758.txt">Table of n, a(n) for n = 1..16385</a>

Discussion
Sun Sep 10
12:25
Antti Karttunen: ~360 chars in data-section because used for filtering.
#4 by Antti Karttunen at Sun Sep 10 12:13:22 EDT 2017
NAME

Compound filter (prime signature of n & sum of squarefree divisors of n): a(n) = P(A046523(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.

#3 by Antti Karttunen at Sun Sep 10 12:12:20 EDT 2017
PROG

A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));

A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));

#2 by Antti Karttunen at Sun Sep 10 12:11:27 EDT 2017
NAME

allocated for Antti KarttunenCompound filter: a(n) = P(A046523(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.

DATA

1, 8, 12, 19, 23, 142, 38, 53, 25, 259, 80, 265, 107, 412, 412, 169, 173, 265, 212, 418, 672, 826, 302, 619, 40, 1087, 63, 607, 467, 5080, 530, 593, 1384, 1717, 1384, 1117, 743, 2086, 1836, 844, 905, 7780, 992, 1093, 607, 2932, 1178, 1759, 59, 418, 2932, 1390, 1487, 619, 2932, 1105, 3576, 4471, 1832, 8575, 1955, 5056, 915, 2209, 3922, 14908, 2348, 2092, 5056

OFFSET

1,2

FORMULA

a(n) = (1/2)*(2 + ((A046523(n)+A048250(n))^2) - A046523(n) - 3*A048250(n)).

PROG

(PARI)

A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));

A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011

A291758(n) = (1/2)*(2 + ((A046523(n)+A048250(n))^2) - A046523(n) - 3*A048250(n));

KEYWORD

allocated

nonn

AUTHOR

Antti Karttunen, Sep 10 2017

STATUS

approved

editing

#1 by Antti Karttunen at Thu Aug 31 07:53:08 EDT 2017
NAME

allocated for Antti Karttunen

KEYWORD

allocated

STATUS

approved