First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 209", based on the 5-celled von Neumann neighborhood.
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 209", based on the 5-celled von Neumann neighborhood.
proposed
approved
editing
proposed
Robert Price, <a href="/A270894/b270894.txt">Table of n, a(n) for n = 0..127</a>
approved
editing
proposed
approved
editing
proposed
allocated for Robert PriceFirst differences of number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 209", based on the 5-celled von Neumann neighborhood.
3, 5, 19, -3, 55, -27, 83, -43, 139, -91, 211, -163, 299, -219, 331, -243, 435, -363, 659, -667, 1003, -983, 1163, -947, 1083, -891, 1227, -1143, 1495, -1383, 1635, -1491, 1887, -1755, 2371, -2475, 3155, -3099, 3411, -3203, 3663, -3495, 4059, -3951, 4503
0,1
Initialized with a single black (ON) cell at stage zero.
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
<a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
<a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
<a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=209; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
Cf. A270891.
allocated
sign,easy
Robert Price, Mar 25 2016
approved
editing
allocated for Robert Price
allocated
approved