Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 189", based on the 5-celled von Neumann neighborhood.
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 189", based on the 5-celled von Neumann neighborhood.
proposed
approved
editing
proposed
1, 8, 44, 212, 940, 3857, 15648, 62928, 251952, 1005696, 4021440, 16072420, 64261572, 256960036, 1027642244, 4110139460
a(8)-a(15) from Lars Blomberg, Jun 03 2016
approved
editing
proposed
approved
editing
proposed
allocated for Robert PriceNumber of active (ON,black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 189", based on the 5-celled von Neumann neighborhood.
1, 8, 44, 212, 940, 3857, 15648, 62928
0,2
Initialized with a single black (ON) cell at stage zero.
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
<a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
<a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
<a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=189; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
Cf. A270677.
allocated
nonn,more
Robert Price, Mar 21 2016
approved
editing
allocated for Robert Price
allocated
approved