proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime having a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.
proposed
editing
editing
proposed
nonn,base,easy,changed
proposed
editing
editing
proposed
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have having a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.
111111111
1311111111131
31131111111113113
3311311111111131133
333113111111111311333
3033311311111111131133303
1323033311311111111131133303231
313230333113111111111311333032313
proposed
editing
editing
proposed
allocated for Clark KimberlingMinimal nested palindromic primes with seed 111111111.
111111111, 1311111111131, 31131111111113113, 3311311111111131133, 333113111111111311333, 3033311311111111131133303, 1323033311311111111131133303231, 313230333113111111111311333032313, 9531323033311311111111131133303231359
1,1
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.
Clark Kimberling, <a href="/A262499/b262499.txt">Table of n, a(n) for n = 1..200</a>
As a triangle:
111111111
1311111111131
31131111111113113
3311311111111131133
333113111111111311333
3033311311111111131133303
1323033311311111111131133303231
313230333113111111111311333032313
s0 = "111111111"; s = {ToExpression[s0]}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s], 10, Max[StringLength[s0], Length[IntegerDigits[Last[s]]]]], Reverse[#]]&[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {10}]; s0 <> ", " <> StringTake[ToString[Rest[s]], {2, -2}]
(* Peter J. C. Moses, Sep 23 2015 *)
Cf. A261881.
allocated
nonn,easy
Clark Kimberling, Sep 24 2015
approved
editing
allocated for Clark Kimberling
allocated
approved