[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A269441 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Alternating sum of 10-gonal (or decagonal) pyramidal numbers.
(history; published version)
#10 by Charles R Greathouse IV at Thu Sep 08 08:46:15 EDT 2022
PROG

(MAGMAMagma) [((-1)^n*(16*n^3+30*n^2-4*n-9)+9)/24: n in [0..40]]; // Vincenzo Librandi, Feb 27 2016

Discussion
Thu Sep 08
08:46
OEIS Server: https://oeis.org/edit/global/2944
#9 by Vaclav Kotesovec at Sat Feb 27 03:42:32 EST 2016
STATUS

proposed

approved

#8 by Vincenzo Librandi at Sat Feb 27 01:31:56 EST 2016
STATUS

editing

proposed

#7 by Vincenzo Librandi at Sat Feb 27 01:31:41 EST 2016
PROG

(MAGMA) [((-1)^n*(16*n^3+30*n^2-4*n-9)+9)/24: n in [0..40]]; // Vincenzo Librandi, Feb 27 2016

STATUS

reviewed

editing

#6 by Vaclav Kotesovec at Fri Feb 26 12:59:42 EST 2016
STATUS

proposed

reviewed

#5 by Vaclav Kotesovec at Fri Feb 26 12:58:02 EST 2016
STATUS

editing

proposed

Discussion
Fri Feb 26
12:59
Ilya Gutkovskiy: Thanks.
#4 by Vaclav Kotesovec at Fri Feb 26 12:56:04 EST 2016
FORMULA

Sum_{n>=1} 1/a(n) = -0.9251958836055717745244669... . - Vaclav Kotesovec, Feb 26 2016

STATUS

proposed

editing

Discussion
Fri Feb 26
12:58
Vaclav Kotesovec: (3/34)*(-2 - 16*Pi*Cot[Pi/16] + 32*Log[32] + 64*Cos[Pi/8]*Log[Cos[Pi/16]] + 32*Sqrt[2]*Log[Cos[Pi/8]] - 64*Cos[Pi/8]* Log[Sin[Pi/16]] - 32*Sqrt[2]*Log[Sin[Pi/8]] + 17*RootSum[3 + 26*#1 + 39*#1^2 + 16*#1^3 & , PolyGamma[0, -#1]/(13 + 39*#1 + 24*#1^2) & ] + 64*Log[Cos[(3*Pi)/16]]*Sin[Pi/8] - 64*Log[Sin[(3*Pi)/16]]*Sin[Pi/8])
#3 by Ilya Gutkovskiy at Fri Feb 26 08:36:47 EST 2016
STATUS

editing

proposed

#2 by Ilya Gutkovskiy at Fri Feb 26 08:36:22 EST 2016
NAME

allocated for Ilya GutkovskiyAlternating sum of 10-gonal (or decagonal) pyramidal numbers.

DATA

0, -1, 10, -28, 62, -113, 188, -288, 420, -585, 790, -1036, 1330, -1673, 2072, -2528, 3048, -3633, 4290, -5020, 5830, -6721, 7700, -8768, 9932, -11193, 12558, -14028, 15610, -17305, 19120, -21056, 23120, -25313, 27642, -30108, 32718, -35473, 38380, -41440, 44660

OFFSET

0,3

LINKS

OEIS Wiki, <a href="http://oeis.org/wiki/Figurate_numbers">Figurate numbers</a>

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PyramidalNumber.html">Pyramidal Number</a>

<a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-3,-2,2,3,1).

FORMULA

G.f.: x*(1 - 7*x)/((x - 1)*(x + 1)^4).

a(n) = ((-1)^n*(16*n^3 + 30*n^2 - 4*n - 9) + 9) /24.

a(n) = Sum_{k = 0..n} (-1)^k*A007585(k).

MATHEMATICA

Table[((-1)^n (16 n^3 + 30 n^2 - 4 n - 9) + 9)/24, {n, 0, 40}]

LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 10, -28, 62}, 41]

KEYWORD

allocated

easy,sign

AUTHOR

Ilya Gutkovskiy, Feb 26 2016

STATUS

approved

editing

#1 by Ilya Gutkovskiy at Fri Feb 26 08:36:22 EST 2016
NAME

allocated for Ilya Gutkovskiy

KEYWORD

allocated

STATUS

approved