(MAGMAMagma) [((-1)^n*(16*n^3+30*n^2-4*n-9)+9)/24: n in [0..40]]; // Vincenzo Librandi, Feb 27 2016
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
(MAGMAMagma) [((-1)^n*(16*n^3+30*n^2-4*n-9)+9)/24: n in [0..40]]; // Vincenzo Librandi, Feb 27 2016
proposed
approved
editing
proposed
(MAGMA) [((-1)^n*(16*n^3+30*n^2-4*n-9)+9)/24: n in [0..40]]; // Vincenzo Librandi, Feb 27 2016
reviewed
editing
proposed
reviewed
editing
proposed
Sum_{n>=1} 1/a(n) = -0.9251958836055717745244669... . - Vaclav Kotesovec, Feb 26 2016
proposed
editing
editing
proposed
allocated for Ilya GutkovskiyAlternating sum of 10-gonal (or decagonal) pyramidal numbers.
0, -1, 10, -28, 62, -113, 188, -288, 420, -585, 790, -1036, 1330, -1673, 2072, -2528, 3048, -3633, 4290, -5020, 5830, -6721, 7700, -8768, 9932, -11193, 12558, -14028, 15610, -17305, 19120, -21056, 23120, -25313, 27642, -30108, 32718, -35473, 38380, -41440, 44660
0,3
OEIS Wiki, <a href="http://oeis.org/wiki/Figurate_numbers">Figurate numbers</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PyramidalNumber.html">Pyramidal Number</a>
<a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-3,-2,2,3,1).
G.f.: x*(1 - 7*x)/((x - 1)*(x + 1)^4).
a(n) = ((-1)^n*(16*n^3 + 30*n^2 - 4*n - 9) + 9) /24.
a(n) = Sum_{k = 0..n} (-1)^k*A007585(k).
Table[((-1)^n (16 n^3 + 30 n^2 - 4 n - 9) + 9)/24, {n, 0, 40}]
LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 10, -28, 62}, 41]
allocated
easy,sign
Ilya Gutkovskiy, Feb 26 2016
approved
editing
allocated for Ilya Gutkovskiy
allocated
approved