[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A264063 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of (6+1)X(n+1) arrays of permutations of 0..n*7+6 with each element having index change +-(.,.) 0,0 1,2 or 2,-2.
(history; published version)
#5 by R. H. Hardin at Tue Nov 10 10:59:30 EST 2015
STATUS

editing

approved

#4 by R. H. Hardin at Tue Nov 10 10:59:27 EST 2015
NAME

Number of (6+1)X(n+1) arrays of permutations of 0..n*k-1 7+6 with each element having index change +-(.,.) 0,0 1,2 or 2,-2.

STATUS

approved

editing

#3 by R. H. Hardin at Mon Nov 02 10:11:54 EST 2015
STATUS

editing

approved

#2 by R. H. Hardin at Mon Nov 02 10:11:51 EST 2015
NAME

allocated for R. H. Hardin

Number of (6+1)X(n+1) arrays of permutations of 0..n*k-1 with each element having index change +-(.,.) 0,0 1,2 or 2,-2.

DATA

1, 320, 102400, 5760000, 324000000, 34260048000, 3622687928896, 311933405047264, 26859186077900176

OFFSET

1,2

COMMENTS

Row 6 of A264059.

EXAMPLE

Some solutions for n=3

..0..7..2..9....0..1..8..9....0..1..2..9....6..1..8..9....0..7..8..3

..4..5.12..1....4..5..6.13...10.11.12..7...10..5..0.13....4.11.12..1

.14..3.10.11....2..3.10.17....8..3..4..5....2..3..4.11....2..9.10..5

..6.19..8.15...12..7.14.15....6.19.20.21...18..7.14.15....6.19.14.15

.22.17.24.13...16.11.24.25...22.23.18.13...22.23.12.19...16.17.18.13

.26.21.16.23...20.21.22.23...14.15.16.17...26.21.16.17...26.27.22.23

.18.25.20.27...18.19.26.27...24.25.26.27...24.25.20.27...24.25.20.21

CROSSREFS

Cf. A264059.

KEYWORD

allocated

nonn

AUTHOR

R. H. Hardin, Nov 02 2015

STATUS

approved

editing

#1 by R. H. Hardin at Mon Nov 02 09:51:15 EST 2015
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved