[go: up one dir, main page]

login
Revision History for A250965 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having its minimum diagonal element less than its minimum antidiagonal element
(history; published version)
#4 by R. H. Hardin at Sat Nov 29 07:15:56 EST 2014
STATUS

editing

approved

#3 by R. H. Hardin at Sat Nov 29 07:15:51 EST 2014
LINKS

R. H. Hardin, <a href="/A250965/b250965.txt">Table of n, a(n) for n = 1..161</a>

#2 by R. H. Hardin at Sat Nov 29 07:15:34 EST 2014
NAME

allocated for R. H. Hardin

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having its minimum diagonal element less than its minimum antidiagonal element

DATA

170, 1592, 1592, 14423, 34988, 14423, 130025, 768855, 768855, 130025, 1172956, 17233753, 42534386, 17233753, 1172956, 10588744, 390286993, 2395598690, 2395598690, 390286993, 10588744, 95612685, 8862302446, 134817198768

OFFSET

1,1

COMMENTS

Table starts

......170.......1592.........14423...........130025.............1172956

.....1592......34988........768855.........17233753...........390286993

....14423.....768855......42534386.......2395598690........134817198768

...130025...17233753....2395598690.....333998523952......46264786072136

..1172956..390286993..134817198768...46264786072136...15830978769561242

.10588744.8862302446.7555575891628.6395621652233739.5432045141123489432

FORMULA

Empirical for column k:

k=1: [linear recurrence of order 7]

k=2: [order 25]

k=3: [order 75]

EXAMPLE

Some solutions for n=2 k=4

..0..0..0..0..1....0..0..0..1..0....0..0..0..2..0....0..0..0..2..2

..0..1..2..0..0....0..1..0..0..0....0..1..0..1..1....0..3..0..0..0

..0..0..3..1..1....0..2..3..0..0....0..1..0..1..3....0..2..1..1..1

KEYWORD

allocated

nonn,tabl

AUTHOR

R. H. Hardin, Nov 29 2014

STATUS

approved

editing

#1 by R. H. Hardin at Sat Nov 29 07:05:11 EST 2014
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved