[go: up one dir, main page]

login
Revision History for A256843 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Decimal expansion of the generalized Euler constant gamma(2,3).
(history; published version)
#19 by Michel Marcus at Sun Jan 07 01:51:45 EST 2024
STATUS

reviewed

approved

#18 by Joerg Arndt at Sun Jan 07 00:57:42 EST 2024
STATUS

proposed

reviewed

#17 by Amiram Eldar at Sun Jan 07 00:34:30 EST 2024
STATUS

editing

proposed

#16 by Amiram Eldar at Sun Jan 07 00:14:59 EST 2024
FORMULA

Equals -(psi(2/3) + log(3))/3 = (A200064 - A002391)/3. - Amiram Eldar, Jan 07 2024

CROSSREFS

Cf. A001620 (gamma(1,1) = EulerGamma), A002391, A200064.

Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),.

#15 by Amiram Eldar at Sun Jan 07 00:14:18 EST 2024
LINKS

D. H. Lehmer, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa27/aa27121.pdf">Euler constants for arithmetic progressions</a>, Acta Arith. 27 (1975) , p. 134.

FORMULA

Equals EulerGamma/3 - Pi/(6*sqrt(3)) + log(3)/6.

STATUS

approved

editing

#14 by Charles R Greathouse IV at Thu Sep 08 08:46:12 EDT 2022
PROG

(MAGMAMagma) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Pi(R)/(6*Sqrt(3)) + Log(3)/6; // G. C. Greubel, Aug 28 2018

Discussion
Thu Sep 08
08:46
OEIS Server: https://oeis.org/edit/global/2944
#13 by Bruno Berselli at Tue Aug 28 05:45:23 EDT 2018
STATUS

reviewed

approved

#12 by Michel Marcus at Tue Aug 28 04:58:44 EDT 2018
STATUS

proposed

reviewed

#11 by G. C. Greubel at Tue Aug 28 02:40:58 EDT 2018
STATUS

editing

proposed

#10 by G. C. Greubel at Tue Aug 28 02:40:54 EDT 2018
LINKS

G. C. Greubel, <a href="/A256843/b256843.txt">Table of n, a(n) for n = 0..10000</a>

PROG

(PARI) default(realprecision, 100); Euler/3 - Pi/(6*sqrt(3)) + log(3)/6 \\ G. C. Greubel, Aug 28 2018

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Pi(R)/(6*Sqrt(3)) + Log(3)/6; // G. C. Greubel, Aug 28 2018

STATUS

approved

editing