editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
Number of (n+1) X (5+1) 0..2 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant -stress 1 X 1 tilings).
approved
editing
proposed
approved
editing
proposed
.. 2.. 2.. 0.. 0.. 0.. 2.... 2.. 0.. 2.. 1.. 0.. 0.... 2.. 0.. 0.. 2.. 2.. 2.... 0.. 1.. 0.. 1.. 0.. 1
.. 2.. 0.. 0.. 2.. 0.. 0.... 0.. 0.. 0.. 1.. 2.. 0.... 0.. 0.. 2.. 2.. 0.. 2.... 2.. 1.. 2.. 1.. 2.. 1
.. 0.. 0.. 2.. 2.. 2.. 0.... 2.. 0.. 2.. 1.. 0.. 0.... 2.. 0.. 0.. 2.. 2.. 2.... 0.. 1.. 0.. 1.. 0.. 1
.. 0.. 2.. 2.. 0.. 2.. 2.... 0.. 0.. 0.. 1.. 2.. 0.... 0.. 0.. 2.. 2.. 0.. 2.... 1.. 0.. 1.. 0.. 1.. 0
.. 0.. 0.. 2.. 2.. 2.. 0.... 2.. 0.. 2.. 1.. 0.. 0.... 0.. 2.. 2.. 0.. 0.. 0.... 0.. 1.. 0.. 1.. 0.. 1
.. 2.. 0.. 0.. 2.. 0.. 0.... 0.. 0.. 0.. 1.. 2.. 0.... 2.. 2.. 0.. 0.. 2.. 0.... 1.. 0.. 1.. 0.. 1.. 0
approved
editing
proposed
approved
editing
proposed
Number of (n+1) X (5+1) 0..2 arrays with every 2X2 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant stress 1X1 1 X 1 tilings).
Column 5 of A234266
Empirical: a(n) = 3*a(n-1) + 6*a(n-2) - 24*a(n-3) + 4*a(n-4) + 36*a(n-5) - 24*a(n-6).
Empirical g.f.: 2*x*(280 - 463*x - 2261*x^2 + 3716*x^3 + 3498*x^4 - 5580*x^5) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)*(1 - 6*x^2)). - Colin Barker, Oct 14 2018
Some solutions for n=5:
Column 5 of A234266.
approved
editing
editing
approved
R. H. Hardin, <a href="/A234263/b234263.txt">Table of n, a(n) for n = 1..210</a>