proposed
approved
proposed
approved
editing
proposed
Number of 6Xn 6 X n 0..1 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
Row 6 of A223949.
Empirical: a(n) = (2/45)*n^6 + (67/36)*n^4 + 8*n^3 + (7757/180)*n^2 + 138*n + 1326 for n>4.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(64 + 281*x - 1735*x^2 + 2546*x^3 - 335*x^4 - 1862*x^5 + 787*x^6 + 767*x^7 - 426*x^8 - 148*x^9 + 93*x^10) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>11.
(End)
Some solutions for n=3:
Cf. A223949.
R. H. Hardin , Mar 29 2013
approved
editing
editing
approved
R. H. Hardin, <a href="/A223953/b223953.txt">Table of n, a(n) for n = 1..210</a>
allocated for R. H. Hardin
Number of 6Xn 0..1 arrays with diagonals and antidiagonals unimodal and rows nondecreasing
64, 729, 2024, 3645, 5951, 9919, 16845, 28558, 47721, 78071, 124691, 194314, 295659, 439799, 640561, 914958, 1283653, 1771455, 2407847, 3227546, 4271095, 5585487, 7224821, 9250990, 11734401, 14754727, 18401691, 22775882, 27989603, 34167751
1,1
Row 6 of A223949
Empirical: a(n) = (2/45)*n^6 + (67/36)*n^4 + 8*n^3 + (7757/180)*n^2 + 138*n + 1326 for n>4
Some solutions for n=3
..0..1..1....0..0..0....1..1..1....1..1..1....0..0..1....1..1..1....0..0..1
..0..0..0....0..0..0....0..1..1....0..1..1....0..1..1....0..0..1....0..0..1
..0..0..0....0..0..1....1..1..1....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..1....1..1..1....0..0..0....0..0..0....0..0..1....0..1..1
..0..1..1....0..1..1....0..0..1....0..1..1....0..0..1....0..0..1....1..1..1
..0..0..0....0..0..1....0..0..0....0..0..1....1..1..1....0..0..1....0..0..0
allocated
nonn
R. H. Hardin Mar 29 2013
approved
editing
allocated for R. H. Hardin
allocated
approved