(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 4*x*(1 -12*x +56*x^2 -128*x^3 +128*x^4 -1024*x^5 +2048*x^6)/((1-8*x)*(1+256*x^4)*(1-8*x+32*x^2)) )); // G. C. Greubel, Dec 21 2019
(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 4*x*(1 -12*x +56*x^2 -128*x^3 +128*x^4 -1024*x^5 +2048*x^6)/((1-8*x)*(1+256*x^4)*(1-8*x+32*x^2)) )); // G. C. Greubel, Dec 21 2019
reviewed
approved
proposed
reviewed
editing
proposed
h[n_]:=Length@Reduce[Sum[x[i]^2, {i, 1, n}]==1, Modulus->8]; Table[h[n], {n, 8}]
proposed
editing
editing
proposed
G.f.: -4*x*(20481 -12*x^6-1024 +56*x^5+2 -128*x^4-3 +128*x^3+564 -1024*x^2-125 +2048*x+1^6) / ((8*x-1)*(32*x^2-8*x+)*(1)*(+256*x^4+)*(1-8*x+32*x^2)). - Colin Barker, Nov 10 2014
seq(coeff(series(4*x*(1 -12*x +56*x^2 -128*x^3 +128*x^4 -1024*x^5 +2048*x^6)/( (1-8*x)*(1+256*x^4)*(1-8*x+32*x^2)), x, n+1), x, n), n = 1..30); # G. C. Greubel, Dec 21 2019
h[n_]:=Length@Reduce[Sum[x[i]^2, {i, 1, n}]==1, Modulus->8]; Table[h[n], {n, 8}]
h[n_]:=Length@Reduce[Sum[x[i]^2, {i, 1, n}]==1, Modulus->8]; Table[h[n], {n, 1, 8}]; a[n_] := a[n] = 16 a16a[n - 1] - 96 a96a[n - 2] + 256 a256a[n - 3] - 256 a256a[n - 4] + 4096 a4096a[n - 5] - 24576 a[n - 6] + 65536 a[n - 7]; Do[ a[i]={4, 16, 96, 512, 2560, 24576, 229376}[[i]], {i, 1, 7}]; Array[a, 33]
(PARI) Vec(-4*x*(20481-12*x^6-1024+56*x^5+2-128*x^4-3+128*x^3+564-1024*x^2-125+2048*x+1^6)/((8*x-1)*(32*x^2-8*x+)*(1)*(+256*x^4+)*(1-8*x+32*x^2)) + O(x^10030)) \\ Colin Barker, Nov 10 2014
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 4*x*(1 -12*x +56*x^2 -128*x^3 +128*x^4 -1024*x^5 +2048*x^6)/((1-8*x)*(1+256*x^4)*(1-8*x+32*x^2)) )); // G. C. Greubel, Dec 21 2019
(Sage)
def A229138_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 4*x*(1 -12*x +56*x^2 -128*x^3 +128*x^4 -1024*x^5 +2048*x^6)/( (1-8*x)*(1+256*x^4)*(1-8*x+32*x^2)) ).list()
a=A229138_list(30); a[1:] # G. C. Greubel, Dec 21 2019
reviewed
editing
proposed
reviewed
editing
proposed