[go: up one dir, main page]

login
Revision History for A225137 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Integer nearest to (4*((S(n))^(n-1))), where S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)) (see coefficients A, B, C(i) in comments).
(history; published version)
#7 by T. D. Noe at Tue Apr 30 12:29:40 EDT 2013
STATUS

editing

approved

#6 by T. D. Noe at Tue Apr 30 12:29:24 EDT 2013
NAME

Integer nearest to (4*((S(n))^(n-1))), where S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)) (see coefficients A, B, C(i) in comments).

DATA

4, 25, 168, 1228, 9592, 78529, 664614, 5761262, 50847534, 455065829, 4118207819, 37608740621, 346064579205, 3204855540243, 29843276960952, 279224843911465, 2623449162422369, 24739367527714285, 234057667278287556, 2220873676061063755, 21128166733321191012, 201476680593923088240, 1925375268308311490310, 18435220201892878915418

COMMENTS

This sequence gives a very good approximation of pi(10^n) (A006880); see (A225138).

FORMULA

a(n)= round(4*((Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)))^(n-1))).

CROSSREFS
STATUS

approved

editing

#5 by T. D. Noe at Tue Apr 30 12:28:03 EDT 2013
STATUS

proposed

approved

#4 by Vladimir Pletser at Mon Apr 29 23:38:48 EDT 2013
STATUS

editing

proposed

#3 by Vladimir Pletser at Mon Apr 29 23:38:16 EDT 2013
NAME

allocated for Vladimir PletserInteger nearest to (4*((S(n))^(n-1))), where S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)) (see coefficients A, B, C(i) in comments)

DATA

4, 25, 168, 1228, 9592, 78529, 664614, 5761262, 50847534, 455065829, 4118207819, 37608740621, 346064579205, 3204855540243, 29843276960952, 279224843911465, 2623449162422369, 24739367527714285, 234057667278287556, 2220873676061063755, 21128166733321191012, 201476680593923088240, 1925375268308311490310, 18435220201892878915418

OFFSET

1,1

COMMENTS

Coefficients are A= 3.8055077992656e+14, B= 23.633281628346, C(0)=-196.69026129533, C(1)=27.625972037921, C(2)=-0.92494798392435.

This sequence gives a very good approximation of pi(10^n) (A006880); see (A225138)

LINKS

Vladimir Pletser, <a href="/A225137/b225137.txt">Table of n, a(n) for n = 1..500</a>

FORMULA

a(n)= round(4*((Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)))^(n-1)))

MAPLE

A:= 3.8055077992656e+14: B:= 23.633281628346: C(0):= -196.69026129533: C(1):=27.625972037921: C(2):= -0.92494798392435: b:=n->log(log(A*(B+n^(8/3)))): c:=n->sum(C(i)*(b(n))^(2*i), i=0..2): seq(round(4*(c(n))^(n-1)), n=1..24);

CROSSREFS
KEYWORD

allocated

nonn,new

AUTHOR

Vladimir Pletser, Apr 29 2013

STATUS

approved

editing

#2 by Vladimir Pletser at Mon Apr 29 20:56:16 EDT 2013
KEYWORD

allocating

allocated

#1 by Vladimir Pletser at Mon Apr 29 20:56:16 EDT 2013
NAME

allocated for Vladimir Pletser

KEYWORD

allocating

STATUS

approved