editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
LinearRecurrence[{4, -7, 8, -7, 4, -1}, {1, 5, 15, 37, 77, 138}, 50] (* Harvey P. Dale, Jun 19 2024 *)
approved
editing
proposed
approved
editing
proposed
a(n)+A213486(n)=(n+1)^3.
<a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-7,8,-7,4,-1).
a(n) = (n+1)^3 - A213486(n).
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w + x + y >= Abs[w - x] + Abs[x - y] + Abs[y - w], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
(Do[If[w + x + y >= Abs[w - x] + Abs[x - y] + Abs[y - w],
s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
approved
editing
<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (4,-7,8,-7,4,-1).
<a href="/index/Rec#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (4,-7,8,-7,4,-1).
proposed
approved
editing
proposed
allocated for Clark KimberlingNumber of (w,x,y) with all terms in {0,...,n} and |w-x|+|x-y|+|y-w| <= w+x+y.
1, 5, 15, 37, 77, 138, 223, 338, 489, 679, 911, 1191, 1525, 1916, 2367, 2884, 3473, 4137, 4879, 5705, 6621, 7630, 8735, 9942, 11257, 12683, 14223, 15883, 17669, 19584, 21631, 23816, 26145, 28621, 31247, 34029, 36973, 40082, 43359, 46810
0,2
<a href="/index/Rec#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (4,-7,8,-7,4,-1).
a(n) = 4*a(n-1)-7*a(n-2)+8*a(n-3)-7*a(n-4)+4*a(n-5)-a(n-6).
G.f.: (1 + x + 2*x^2 + 4*x^3 + x^4)/((1 - x)^4 (1 + x^2)).
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x + y >= Abs[w - x] + Abs[x - y] + Abs[y - w],
s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A213487 *)
Cf. A212959.
allocated
nonn,easy
Clark Kimberling, Jun 13 2012
approved
editing