[go: up one dir, main page]

login
Revision History for A212353 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) is the smallest positive solutions of the congruence x^2 + (x+1)^2 == 0 (mod prime), where prime = A002144(n) (Pythagorean primes).
(history; published version)
#22 by N. J. A. Sloane at Fri Dec 13 13:46:18 EST 2019
STATUS

proposed

approved

#21 by G. C. Greubel at Fri Dec 13 01:55:08 EST 2019
STATUS

editing

proposed

#20 by G. C. Greubel at Fri Dec 13 01:51:59 EST 2019
COMMENTS

There are at most two incongruent solutions of this congruence due to the degree. The fact that there are precisely two such solutions for each prime of the form 4*k+1 (see A002144) is due to the reduction of this problem to one of quadratic residues, namely to X^2 == -1 (mod 2p), with p a prime (see the Nagell reference, given in A210848, pp. 132-3, especially theorem 77), adapted to the quadratic form f(x) = 2*x^2 + 2*x + 1, with discriminant D=-4. This congruence with composite modulus has exactly two incongruent solutions because X^2 == -1 (mod 2) has only the solution +1 modulo 2 (odd numbers), and X^2 == -1 (mod p) has (at least one) solution if the Legendre symbol (-1/p) = +1 (i.e., if -1 is a quadratic residue modulo p). Now (-1/p) = (-1)^(p-1)/2 (see, e.g., the Niven-Zuckerman-Montgomery reference given in A001844, Theorem 3.2 (1), p. 132). Hence there is a solution modulo p iff p == 1 (mod 4). Call the smallest positive one X0, with 0 < X0 < p-1. Then one also has the incongruent solution X1 := p-X0. This implies that there are precisely two incongruent solution of the original congruence modulo 2*p for each 1 (mod 4) prime (see, e.g., Nagell's book, pp. 83-4, Theorem 46). If u is a solution for p = A002144(n) (the existence of u has just been proved) then also the companion v := p-1-u satisfies this congruence, and v is incongruent to u modulo p.

see the Nagell reference, given in A210848, pp. 132-3, especially theorem 77, adapted to the quadratic form f(x) = 2*x^2 + 2*x + 1, with discriminant D=-4. This congruence with composite modulus has exactly two incongruent solutions because X^2 == -1 (mod 2) has only the solution +1 modulo 2 (odd numbers), and X^2 == -1 (mod p) has (at least one) solution if the Legendre symbol (-1/p) = +1 (i.e., if -1 is a quadratic residue modulo p). Now (-1/p) = (-1)^(p-1)/2 (see, e.g., the Niven-Zuckerman-Montgomery reference given in A001844, Theorem 3.2 (1), p. 132). Hence there is a solution modulo p iff p == 1 (mod 4). Call the smallest positive one X0, with 0 < X0 < p-1. Then one also has the incongruent solution X1 := p-X0. This implies that there are precisely two incongruent solution of the original congruence modulo 2*p for each 1 (mod 4) prime (see, e.g., Nagell's book, pp. 83-4, Theorem 46). If u is a solution for p = A002144(n) (the existence of u has just been proved) then also the companion v := p-1-u satisfies this congruence, and v is incongruent to u modulo p.

STATUS

proposed

editing

Discussion
Fri Dec 13
01:55
G. C. Greubel: Based on edit #3 the better approximation is to place the missing ")" after ... theorem 77.  Also based on the later use of " (see N -Z-M ref given in A001844...p.132)".
#19 by Jon E. Schoenfield at Mon Dec 09 23:33:43 EST 2019
STATUS

editing

proposed

Discussion
Tue Dec 10
04:21
Michel Marcus: after  especially theorem 77 ?   or after with discriminant D=-4  ??
#18 by Jon E. Schoenfield at Mon Dec 09 23:33:36 EST 2019
COMMENTS

All positive solutions of this congruence are provided by the two sequences with entries u(n,k) = a(n) + k*A002144(n) and v(n,k) = A212354(n) + k*A002144(n), n >= 1, k >= 0. For the cases p = 5, 13 and 17 see A047219, A212160 and A212161, respectively, where the even -indexed numbers are the u(n,k) and the odd -indexed ones the v(n,k) (bisection).

STATUS

proposed

editing

#17 by Jon E. Schoenfield at Mon Dec 09 23:32:55 EST 2019
STATUS

editing

proposed

#16 by Jon E. Schoenfield at Mon Dec 09 23:31:46 EST 2019
COMMENTS

There are at most two incongruent solutions of this congruence due to the degree. The fact that there are precisely two such solutions for each prime of the form 4*k+1 (see A002144) is due to the reduction of this problem to one of quadratic residues, namely to X^2 == -1 (mod 2p), with p a prime (

There are at most two incongruent solutions of this congruence due to the degree. The fact that there are precisely two such solutions for each prime of the form 4*k+1 (see A002144) is due to the reduction of this problem to one of quadratic residues, namely to X^2 == -1 mod(2p), with p a prime (see the Nagell reference, given in A210848, pp. 132-3, especially theorem 77, adapted to the quadratic form f(x) = 2*x^2 + 2*x + 1, with discriminant D=-4. This congruence with composite modulus has exactly two incongruent solutions because X^2 == -1 (mod 2) has only the solution +1 modulo 2 (odd numbers), and X^2 == -1 (mod p) has (at least one) solution if the Legendre symbol (-1/p) = +1 (i.e. , if -1 is a quadratic residue modulo p). Now (-1/p) = (-1)^(p-1)/2 (see, e.g., the Niven-Zuckerman-Montgomery reference given in A001844, Theorem 3.2 (1), p. 132). Hence there is a solution modulo p iff p == 1 (mod 4). Call the smallest positive one X0, with 0 < X0 < p-1 . Then one also has the incongruent solution X1 := p-X0. This implies that there are precisely two incongruent solution of the original congruence modulo 2*p for each 1 (mod 4) prime (see, e.g., Nagell's book. , pp. 83-4, Theorem 46). If u is a solution for p = A002144(n) (the existence of u has just been proved) then also the companion v := p-1-u satisfies this congruence, and v is incongruent to u modulo p.

The primes with x^2 +(x+1)^2 = prime (necessarily from A002144) are found under A027862. The corresponding x values are found under A027861. These x values explain the positions n' where a(n') is smaller than a(n'-1) (for n'>=6): determine k with x=A027861(k), and then n' from A027862(k) = A002144(n'). Note that a(n') = x for such values n'. E.g., n'=6 with a(6)=4: x=4=A027861(3), p=41=A027862(3) = A002144(6). These values n' are n' = 1, 2, 6, 8, 14, 19, 30, ...

All positive solutions of this congruence are provided by the two sequences with entries u(n,k) = a(n) + k*A002144(n) and v(n,k) = A212354(n) + k*A002144(n), n >= 1, k >= 0. For the cases p = 5, 13 and 17 see A047219, A212160 and A212161, respectively, where the even indexed numbers are the u(n,k) and the odd indexed ones the v(n,k) (bisection).

FORMULA

a(n) is the smaller of the two smallest positive incongruent solutions of the congruence x^2 + (x+1)^2 = 2*x^2 + 2*x + 1 == 0 (mod A002144(n)), where A002144 lists the primes

1 modulo 4 (primes of the form 4*k+1). For the proof of the existence of a(n) see a comment above. The next larger incongruent companion solution is A212354(n), n >= 1.

EXAMPLE

n=1: a(1)=1 because 1^2 + 2^2 = 5 == 0 (mod 5). The companion solution is (5-1) - 1 = 3 = A212354(1).

n=3: a(3)=6 because 6^2 + 7^2 = 85 = 5*17 == 0 (mod 17). The companion is (17-1) - 6 = 10 = A212354(3).

n=14: a(14)=7 because p=A002144(14) = 113 = A027862(5), and 49^2 + 50^2 = 113. The companion is (113-1) - 7 = 105 = A212354(14).

STATUS

approved

editing

Discussion
Mon Dec 09
23:32
Jon E. Schoenfield: I inserted a temporary line break after a left parenthesis with no matching right parenthesis.  Where should the right parenthesis be inserted?
#15 by N. J. A. Sloane at Wed Aug 22 11:48:13 EDT 2012
STATUS

editing

approved

#14 by N. J. A. Sloane at Wed Aug 22 11:48:10 EDT 2012
COMMENTS

There are at most two incongruent solutions of this congruence due to the degree. The fact that there are precisely two such solutions for each prime of the form 4*k+1 (see A002144) is due to the reduction of this problem to one of quadratic residues, namely to X^2 == -1 mod(2p), with p a prime (see the Nagell reference, given in A210848, pp. 132-3, especially theorem 77, adapted to the quadratic form f(x) = 2*x^2 + 2*x + 1, with discriminant D=-4. This congruence with composite modulus has exactly two incongruent solutions because X^2==-1 (mod 2) has only the solution +1 modulo 2 (odd numbers), and X^2 == -1 (mod p) has (at least one) solution if the Legendre symbol (-1/p) = +1 (i.e. if -1 is a quadratic residue modulo p). Now (-1/p) = (-1)^(p-1)/2 (see, e.g., the Niven-Zuckerman-Montgomery reference given in A001844, Theorem 3.2 (1), p. 132). Hence there is a solution modulo p iff p==1 (mod 4). Call the smallest positive one X0, with 0< X0 < p-1 . Then one also has the incongruent solution X1:= p-X0. This implies that there are precisely two incongruent solution of the original congruence modulo 2*p for each 1 (mod 4) prime (see, e.g., Nagell's book. pp.83-4, Theorem 46). If u is a solution for p= A002144(n) (the existence of u has just been provenproved) then also the companion v:=p-1-u satisfies this congruence, and v is incongruent to u modulo p.

STATUS

approved

editing

#13 by T. D. Noe at Wed May 23 17:37:44 EDT 2012
STATUS

proposed

approved