editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
editing
approved
<a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-12, -54, -112, -105, -36, -2).
approved
editing
editing
approved
(PARI) Vec((3+30*x+108*x^2+168*x^3+105*x^4+18*x^5) /(1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
sign,easy
approved
editing
editing
approved
We note that above formula is the Binet form of the following recurrence sequence: X(n+3) + 6*X(n+2) + 9*X(n+1) + (2 + sqrt(2))*X(n) = 0, which is a special type of the sequence X(n)=X(n;g) defined in the comments to A215634 for g:=Pi/24. The sequences a(n) and b(n) satisfy the following system of recurrence equations: a(n) = -b(n+3)-6*b(n+2)-9*b(n+1)-2*b(n), 2*b(n) = -a(n+3)-6*a(n+2)-9*a(n+1)-2*a(n).
X(n+3) + 6*X(n+2) + 9*X(n+1) + (2 + sqrt(2))*X(n) = 0, which is a special type of the sequence X(n)=X(n;g) defined in the comments to A215634 for g:=Pi/24. The sequences a(n) and b(n) satisfy the following system of recurrence equations: a(n) = -b(n+3)-6*b(n+2)-9*b(n+1)-2*b(n), 2*b(n) = -a(n+3)-6*a(n+2)-9*a(n+1)-2*a(n).
G.f.:(3+30*x+108*x^2+168*x^3+105*x^4+18*x^5) / (1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6).
proposed
editing
editing
proposed
3, -6, 18, -60, 210, -756, 2772, -10296, 38610, -145860, 554268, -2116296, 8112462, -31201644, 120347532, -465328200, 1803025410, -6999149124, 27213719148, -105960069864, 413078158350, -1612098272460, 6297409350492, -24620247483624, 96324799842498, -377102656201956, 1477141800784668, -5788892311162440, 22696178093443470, -89016507404589996, 349243567600521132, -1370592564667850376, 5380154094688857090, -21123881564720422020, 82953252218569657548, -325809196861770386856
proposed
editing