Harvey P. Dale, <a href="/A215429/b215429_1.txt">Table of n, a(n) for n = 1..1000</a>
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
Harvey P. Dale, <a href="/A215429/b215429_1.txt">Table of n, a(n) for n = 1..1000</a>
editing
approved
Harvey P. Dale, <a href="/A215429/b215429_1.txt">Table of n, a(n) for n = 1..1000</a>
Select[(#+1)/6&/@Select[Range[3000]^2+1, PrimeQ], PrimeQ] (* Harvey P. Dale, May 07 2017 *)
approved
editing
proposed
approved
editing
proposed
allocated for Michel LagneauPrimes of the form (n^2+2)/6 where n^2+1 is prime.
3, 17, 43, 67, 113, 523, 2017, 2243, 4817, 8363, 9283, 16433, 17713, 19267, 30817, 56843, 81667, 97283, 141067, 149153, 185153, 203873, 271363, 279073, 329473, 398353, 400417, 455953, 472643, 481667, 513923, 519793, 530443, 549643, 670673, 684113, 746243
1,1
The corresponding n are in A215248.
3 is in the sequence because, for n = 4, 4^2 + 1 = 17 and (4^2 + 2)/6 = 3 are primes.
lst={}; Do[ p=n^2+ 1; q=(p+1)/6; If[PrimeQ[p]&&PrimeQ[q], AppendTo[lst, q]], {n, 0, 2500}]; lst
allocated
nonn
Michel Lagneau, Aug 10 2012
approved
editing
allocated for Michel Lagneau
recycled
allocated
editing
approved
Primes congruent to {0, 2, 4, 5, 6} mod 17.
2, 5, 17, 19, 23, 53, 73, 89, 107, 157, 191, 193, 223, 227, 257, 277, 293, 311, 359, 379, 397, 431, 461, 463, 499, 563, 599, 601, 617, 631, 701, 719, 733, 769, 787, 821, 839, 907, 937, 941, 971, 991, 1009, 1039, 1093, 1109, 1213, 1229, 1277, 1279, 1297
1,1
Vincenzo Librandi, <a href="/A215429/b215429.txt">Table of n, a(n) for n = 1..1000</a>
Select[Prime[Range[300]], MemberQ[{0, 2, 4, 5, 6}, Mod[#, 17]]&]
(MAGMA) [p: p in PrimesUpTo(1300) | p mod 17 in [0, 2, 4, 5, 6]];
nonn,easy,changed
recycled
Vincenzo Librandi, Aug 10 2012
proposed
editing
editing
proposed