[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A205336 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 3.
(history; published version)
#19 by Alois P. Heinz at Tue Sep 24 14:31:54 EDT 2019
STATUS

proposed

approved

#18 by Michel Marcus at Tue Sep 24 13:23:31 EDT 2019
STATUS

editing

proposed

#17 by Michel Marcus at Tue Sep 24 13:23:28 EDT 2019
FORMULA

a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0=(3*(i-l))/7}((-1)^j*binomial(i-l,j)*binomial(-l+3*(-l-2*j+i)-j+i-1,3*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - _Vladimir Kruchinin, _, Apr 07 2017

STATUS

proposed

editing

#16 by Jean-François Alcover at Tue Sep 24 13:01:09 EDT 2019
STATUS

editing

proposed

#15 by Jean-François Alcover at Tue Sep 24 13:00:56 EDT 2019
MATHEMATICA

a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, l] (Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 3(-l - 2j + i) - j + i - 1, 3(-l - 2j + i) - j], {j, 0, (3(i - l))/7}]) (-1)^l, {l, 0, i}]) a[n - i], {i, 1, n}]/n];

a /@ Range[1, 23] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)

STATUS

approved

editing

#14 by N. J. A. Sloane at Fri Apr 07 14:35:44 EDT 2017
STATUS

editing

approved

#13 by N. J. A. Sloane at Fri Apr 07 14:35:42 EDT 2017
PROG

a(n):=if n=0 then 1 else sum((sum(binomial(i, l)*(sum((-1)^j*binomial(i-l, j)*binomial(-l+3*(-l-2*j+i)-j+i-1, 3*(-l-2*j+i)-j), j, 0, (3*(i-l))/7))*(-1)^l, l, 0, i))*a(n-i), i, 1, n)/n; /* _Vladimir Kruchinin, _, Apr 07 2017 */

STATUS

proposed

editing

#12 by Vladimir Kruchinin at Fri Apr 07 03:37:52 EDT 2017
STATUS

editing

proposed

Discussion
Fri Apr 07
13:11
Michel Marcus: Please Vladimir, your name must have underscores
#11 by Vladimir Kruchinin at Fri Apr 07 03:37:43 EDT 2017
FORMULA

a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0=(3*(i-l))/7}((-1)^j*binomial(i-l,j)*binomial(-l+3*(-l-2*j+i)-j+i-1,3*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017

PROG

(Maxima)

a(n):=if n=0 then 1 else sum((sum(binomial(i, l)*(sum((-1)^j*binomial(i-l, j)*binomial(-l+3*(-l-2*j+i)-j+i-1, 3*(-l-2*j+i)-j), j, 0, (3*(i-l))/7))*(-1)^l, l, 0, i))*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin, Apr 07 2017 */

STATUS

approved

editing

#10 by Alois P. Heinz at Tue Dec 20 19:40:50 EST 2016
STATUS

editing

approved