reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Empirical: a(n) = 3*a(n-1) - 6*a(n-4) + 4*a(n-6) for n > 9.
.. 0.. 0.. 1.. 2.... 0.. 1.. 0.. 2.... 0.. 1.. 1.. 0.... 0.. 0.. 0.. 1.... 0.. 0.. 0.. 0
.. 0.. 0.. 0.. 1.... 0.. 1.. 0.. 2.... 0.. 1.. 1.. 0.... 0.. 0.. 1.. 1.... 0.. 0.. 0.. 0
.. 2.. 0.. 0.. 0.... 0.. 1.. 0.. 2.... 0.. 1.. 1.. 0.... 0.. 1.. 1.. 1.... 1.. 1.. 1.. 1
.. 2.. 2.. 0.. 0.... 0.. 1.. 0.. 2.... 0.. 1.. 1.. 0.... 1.. 1.. 1.. 2.... 2.. 2.. 2.. 2
.. 2.. 2.. 2.. 0.... 0.. 1.. 0.. 2.... 0.. 1.. 1.. 0.... 1.. 1.. 2.. 2.... 1.. 1.. 1.. 1
.. 1.. 2.. 2.. 2.... 0.. 1.. 0.. 2.... 0.. 1.. 1.. 0.... 1.. 2.. 2.. 2.... 1.. 1.. 1.. 1
reviewed
editing
proposed
reviewed
editing
proposed
Number of (n+2)X4 X 4 0..2 arrays with every 3X3 3 X 3 subblock having three equal elements in a row horizontally, vertically, diagonally or antidiagonally exactly three ways, and new values 0..2 introduced in row major order.
Column 2 of A204284.
Empirical: a(n) = 3*a(n-1) -6*a(n-4) +4*a(n-6) for n>9.
Empirical g.f.: x*(274 - 200*x - 1001*x^2 - 2402*x^3 + 1604*x^4 + 2850*x^5 + 3772*x^6 - 1792*x^7 - 3072*x^8) / ((1 - x)*(1 - 2*x - 2*x^2)*(1 - 2*x^3)). - Colin Barker, Jun 06 2018
Some solutions for n=4:
Cf. A204284.
R. H. Hardin , Jan 13 2012
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Jan 13 2012
editing
approved
R. H. Hardin, <a href="/A204278/b204278.txt">Table of n, a(n) for n = 1..210</a>