[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A204060 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
G.f.: Sum_{n>=1} Fibonacci(n^2)*x^(n^2).
(history; published version)
#12 by Bruno Berselli at Mon Dec 31 03:05:02 EST 2012
STATUS

proposed

approved

#11 by Michel Marcus at Mon Dec 31 02:52:35 EST 2012
STATUS

editing

proposed

#10 by Michel Marcus at Mon Dec 31 02:51:37 EST 2012
COMMENTS

Compare g.f. to the Lambert series identity: Sum_{n>=1} lamdalambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2).

STATUS

approved

editing

#9 by Paul D. Hanna at Sat Apr 07 22:52:18 EDT 2012
STATUS

editing

approved

#8 by Paul D. Hanna at Sat Apr 07 22:52:11 EDT 2012
NAME

G.f.: Sum_{n>=1} fibonacciFibonacci(n^2)*x^(n^2).

FORMULA

G.f.: Sum_{n>=1} lambda(n)*fibonacciFibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n) and Lucas(n) = A000204(n).

CROSSREFS

Cf. A209614 (variant).

STATUS

approved

editing

#7 by Russ Cox at Fri Mar 30 18:37:34 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Jan 12 2012

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#6 by N. J. A. Sloane at Thu Jan 12 09:30:29 EST 2012
STATUS

proposed

approved

#5 by Paul D. Hanna at Thu Jan 12 01:43:53 EST 2012
STATUS

editing

proposed

#4 by Paul D. Hanna at Thu Jan 12 01:43:47 EST 2012
NAME

G.f.: Sum_{n>=1} fibonacci(n^2)*x^(n^2).

DATA

1, 0, 0, 3, 0, 0, 0, 0, 34, 0, 0, 0, 0, 0, 0, 987, 0, 0, 0, 0, 0, 0, 0, 0, 75025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14930352, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7778742049, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10610209857723, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37889062373143906, 0, 0, 0, 0, 0

COMMENTS

Compare g.f. to the Lambert series identity: Sum_{n>=1} lamda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2).

FORMULA

G.f.: Sum_{n>=1} lambda(n)*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n) and Lucas(n) = A000204(n).

EXAMPLE

G.f.: A(x) = x + 3*x^4 + 34*x^9 + 987*x^16 + 75025*x^25 + 14930352*x^36 +...

PROG

(PARI) {a(n)=issquare(n)*fibonacci(n)}

CROSSREFS

Cf. A203847, A054783, A008836 (lambda), A000204 (Lucas), A000045.

STATUS

proposed

editing

#3 by Paul D. Hanna at Thu Jan 12 01:30:00 EST 2012
STATUS

editing

proposed